FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS

被引:126
作者
Budak, Huseyin [1 ]
Tunc, Tuba [1 ]
Sarikaya, Mehmet Zeki [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
Fractional integrals; Hermite-Hadamard inequality; interval-valued functions; INTEGRAL-INEQUALITIES; CALCULUS;
D O I
10.1090/proc/14741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define interval-valued right-sided Riemann-Liouville fractional integrals. Later, we handle Hermite-Hadamard inequality and Hermite-Hadamard-type inequalities via interval-valued Riemann-Liouville fractional integrals.
引用
收藏
页码:705 / 718
页数:14
相关论文
共 48 条
[31]  
Nikodem K., 1987, AEQUATIONES MATH, V33, P46, DOI DOI 10.1007/BF01836150
[32]  
Nikodem K., 2014, MATH AETERNA, V4, P979
[33]  
Pachpatte B. G., 2003, RGMIA Res. Rep. Coll.
[34]  
Park C, 2018, J FIX POINT THEORY A, V20, DOI 10.1007/s11784-018-0547-0
[35]   Improvements of the Hermite-Hadamard inequality [J].
Pavic, Zlatko .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[36]  
Pecaric J. E., 1992, Mathematics in Science and Engineering, V187
[37]  
Piatek B., 2012, ZESZYTY NAUKOWE MATE
[38]  
Piatek B., 2005, DEMONSTR MATH, V38, P875
[39]   Some integral inequalities for interval-valued functions [J].
Roman-Flores, H. ;
Chalco-Cano, Y. ;
Lodwick, W. A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) :1306-1318
[40]  
Román-Flores H, 2013, PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), P1455, DOI 10.1109/IFSA-NAFIPS.2013.6608616