FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS

被引:126
作者
Budak, Huseyin [1 ]
Tunc, Tuba [1 ]
Sarikaya, Mehmet Zeki [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
Fractional integrals; Hermite-Hadamard inequality; interval-valued functions; INTEGRAL-INEQUALITIES; CALCULUS;
D O I
10.1090/proc/14741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define interval-valued right-sided Riemann-Liouville fractional integrals. Later, we handle Hermite-Hadamard inequality and Hermite-Hadamard-type inequalities via interval-valued Riemann-Liouville fractional integrals.
引用
收藏
页码:705 / 718
页数:14
相关论文
共 48 条
[1]  
[Anonymous], 1956, Math. Zeitschr.
[2]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[3]  
[Anonymous], 1997, Fractals and Fractional Calculus in Continuum Mechanics
[4]  
[Anonymous], 1999, MATH SCI ENG
[5]  
Aubin Jean-Pierre, 1984, FUNDAMENTAL PRINCIPL, V264
[6]  
Azpeitia A.G., 1994, Revista Colombiana de Matematicas, V28, P7
[7]  
Breckner WW, 1993, Rev. Anal. Numer. Theor. Approx., V22, P39
[8]   Ostrowski type inequalities and applications in numerical integration for interval-valued functions [J].
Chalco-Cano, Y. ;
Lodwick, W. A. ;
Condori-Equice, W. .
SOFT COMPUTING, 2015, 19 (11) :3293-3300
[9]  
Chalco-Cano Y, 2004, COMPUT MATH APPL, V47, P1411, DOI 10.1016/j.camwa.2004.04.024
[10]   Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative [J].
Chalco-Cano, Y. ;
Flores-Franulič, A. ;
Román-Flores, H. .
Computational and Applied Mathematics, 2012, 31 (03) :457-472