Sparse Spectrum Gaussian Process Regression

被引:0
作者
Lazaro-Gredilla, Miguel [1 ]
Quinonero-Candela, Joaquin [3 ]
Rasmussen, Carl Edward [2 ,4 ]
Figueiras-Vidal, Anibal R. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, Madrid 28911, Spain
[2] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
[3] Microsoft Res Ltd, Cambridge CB3 0FB, England
[4] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Gaussian process; probabilistic regression; sparse approximation; power spectrum; computational efficiency;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to sparsify the spectral representation of the GP. This leads to a simple, practical algorithm for regression tasks. We compare the achievable trade-offs between predictive accuracy and computational requirements, and show that these are typically superior to existing state-of-the-art sparse approximations. We discuss both the weight space and function space representations, and note that the new construction implies priors over functions which are always stationary, and can approximate any covariance function in this class.
引用
收藏
页码:1865 / 1881
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1999, INTERPOLATION SPATIA
[2]  
BRETTHORST GL, 2000, MAXIMUM ENTROPY BAYE, P1
[3]  
Carlson A.B., 1986, COMMUNICATION SYSTEM, V3rd
[4]   Sparse on-line Gaussian processes [J].
Csató, L ;
Opper, M .
NEURAL COMPUTATION, 2002, 14 (03) :641-668
[5]  
Lazaro-Gredilla Miguel., 2007, Sparse spectral sampling gaussian processes
[6]  
LAZAROGREDILLA M, 2010, ADV NEURAL INFORM PR, V22, P1087
[7]  
LAZAROGREDILLA M, 2010, THESIS U CARLOS 3 MA
[8]  
MacKay D. J. C., 2003, Information Theory, Inference and Learning Algorithms
[9]  
Naish-Guzman A., 2008, Advances in Neural Information Processing Systems, P1057
[10]  
Quinonero-Candela J., 2007, Large-scale kernel machines, P203