Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions

被引:23
作者
Berlinger, Sarah A. [1 ,2 ]
Chowdhury, Anamika [1 ,2 ]
Van Cleve, Tim [3 ]
He, Aaron [1 ,2 ]
Dagan, Nicholas [1 ,2 ]
Neyerlin, Kenneth C. [3 ]
McCloskey, Bryan D. [1 ,2 ]
Radke, Clayton J. [1 ]
Weber, Adam Z. [2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[3] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
polymer electrolyte fuel cell; inks; colloidal interactions; electrode fabrication; platinum; Nafion; IONOMER DISTRIBUTION; LAYER; ELECTRODES; RESISTANCE;
D O I
10.1021/acsami.2c10499
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon-platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (zeta)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink zeta-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst-particle agglomeration as a function of PPL, as revealed by pH, zeta-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.
引用
收藏
页码:36731 / 36740
页数:10
相关论文
共 44 条
  • [1] [Anonymous], Open Source Impedance Fitter
  • [2] Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation
    Balu, Rajkamal
    Choudhury, Namita Roy
    Mata, Jitendra P.
    de Campo, Liliana
    Rehm, Christine
    Hill, Anita J.
    Dutta, Naba K.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9934 - 9946
  • [3] Multicomponent, multiphase interactions in fuel-cell inks
    Berlinger, Sarah A.
    Garg, Samay
    Weber, Adam Z.
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29
  • [4] Probing Ionomer Interactions with Electrocatalyst Particles in Solution
    Berlinger, Sarah A.
    McCloskey, Bryan D.
    Weber, Adam Z.
    [J]. ACS ENERGY LETTERS, 2021, 6 (06) : 2275 - 2282
  • [5] Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation
    Berlinger, Sarah A.
    McCloskey, Bryan D.
    Weber, Adam Z.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (31) : 7790 - 7796
  • [6] Agglomerates in Polymer Electrolyte Fuel Cell Electrodes: Part I. Structural Characterization
    Cetinbas, Firat C.
    Ahluwalia, Rajesh K.
    Kariuki, Nancy N.
    Myers, Deborah J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (13) : F1051 - F1058
  • [7] Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes
    Cetinbas, Firat C.
    Ahluwalia, Rajesh K.
    Kariuki, Nancy
    De Andrade, Vincent
    Fongalland, Dash
    Smith, Linda
    Sharman, Jonathan
    Ferreira, Paulo
    Rasouli, Somaye
    Myers, Deborah J.
    [J]. JOURNAL OF POWER SOURCES, 2017, 344 : 62 - 73
  • [8] Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrodes
    Chowdhury, Anamika
    Bird, Ashley
    Liu, Jiangjin
    Zenyuk, Iryna, V
    Kusoglu, Ahmet
    Radke, Clayton J.
    Weber, Adam Z.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 42579 - 42589
  • [9] Diard J.-P., 2020, Handbook of Electrochemical Impedance Spectroscopy
  • [10] Catalyst Layer Ink Interactions That Affect Coatability
    Dixit, Marm B.
    Harkey, Brice A.
    Shen, Fengyu
    Hatzell, Kelsey B.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) : F264 - F271