Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study

被引:142
|
作者
Hu, Jiuning [1 ]
Schiffli, Stephen
Vallabhaneni, Ajit
Ruan, Xiulin [2 ]
Chen, Yong P. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Birck Nanotechnol Ctr, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
TRANSPORT;
D O I
10.1063/1.3491267
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using classical molecular dynamics simulation, we have studied the effect of edge-passivation by hydrogen (H-passivation) and isotope mixture (with random or superlattice distributions) on the thermal conductivity of rectangular graphene nanoribbons (GNRs) (of several nanometers in size). We find that the thermal conductivity is considerably reduced by the edge H-passivation. We also find that the isotope mixing can reduce the thermal conductivities, with the superlattice distribution giving rise to more reduction than the random distribution. These results can be useful in nanoscale engineering of thermal transport and heat management using GNRs. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3491267]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
    Hu, Jiuning
    Ruan, Xiulin
    Chen, Yong P.
    NANO LETTERS, 2009, 9 (07) : 2730 - 2735
  • [2] Molecular Dynamics Calculation of Thermal Conductivity of Graphene Nanoribbons
    Hu, Jiuning
    Ruan, Xiulin
    Jiang, Zhigang
    Chen, Yong P.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 135 - +
  • [3] Thermal conductivity of sawtooth-like graphene nanoribbons: A molecular dynamics study
    Zhang, Hui-Sheng
    Guo, Zhi-Xin
    Gong, Xin-Gao
    Cao, Jue-Xian
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
  • [4] Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study
    Noshin, Maliha
    Khan, Asir Intisar
    Navid, Ishtiaque Ahmed
    Uddin, H. M. Ahsan
    Subrina, Samia
    AIP ADVANCES, 2017, 7 (01)
  • [5] Effect of vacancy defects on the thermal conductivity of graphene nanoribbons: A molecular dynamics study
    Yang, P. (yangpingdm@ujs.edu.cn), 1600, Inderscience Publishers (06):
  • [6] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
    徐润峰
    韩奎
    李海鹏
    Chinese Physics B, 2018, 27 (02) : 500 - 505
  • [7] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
    Xu, Run-Feng
    Han, Kui
    Li, Hai-Peng
    CHINESE PHYSICS B, 2018, 27 (02)
  • [8] Tuning thermal conductivity of nanoporous crystalline silicon by surface passivation: A molecular dynamics study
    Fang, Jin
    Pilon, Laurent
    APPLIED PHYSICS LETTERS, 2012, 101 (01)
  • [9] Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons
    Kipper, Ana Claudia
    da Silva, Leandro Barros
    PHYSICA B-CONDENSED MATTER, 2019, 556 : 1 - 5
  • [10] Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study
    Zhang, Jianwei
    He, Xiaodong
    Yang, Lin
    Wu, Guoqiang
    Sha, Jianjun
    Hou, Chengyu
    Yin, Cunlu
    Pan, Acheng
    Li, Zhongzhou
    Liu, Yubai
    SENSORS, 2013, 13 (07): : 9388 - 9395