Ladder operators and a differential equation for varying generalized Freud-type orthogonal polynomials

被引:3
|
作者
Filipuk, Galina [1 ]
Manas-Manas, Juan F. [2 ]
Moreno-Balcazar, Juan J. [2 ,3 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Almeria, Dept Matemat, Ctra Sacramento S-N, La Canada De San Urbano 04120, Almeria, Spain
[3] Inst Carlos I Fis Teor & Computac, Ctra Sacramento S-N, La Canada De San Urbano 04120, Almeria, Spain
关键词
Orthogonal polynomials; ladder operators; Freud weights; STRONG ASYMPTOTICS; RESPECT; WEIGHTS;
D O I
10.1142/S2010326318400051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce varying generalized Freud-type polynomials which are orthogonal with respect to a varying discrete Freud-type inner product. Our main goal is to give ladder operators for this family of polynomials as well as find a second-order differential-difference equation that these polynomials satisfy. To reach this objective, it is necessary to consider the standard Freud orthogonal polynomials and, in the meanwhile, we find new difference relations for the coefficients in the first-order differential equations that this standard family satisfies.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A differential equation for varying Krall-type orthogonal polynomials
    Filipuk, Galina
    Manas-Manas, Juan F.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (01)
  • [2] An electrostatic interpretation of the zeros of the Freud-type orthogonal polynomials
    Garrido, A
    Arvesú, J
    Marcellán, F
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 19 : 37 - 47
  • [3] On semiclassical orthogonal polynomials associated with a Freud-type weixght
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5295 - 5313
  • [4] MEAN CONVERGENCE OF EXPANSIONS IN FREUD-TYPE ORTHOGONAL POLYNOMIALS
    MHASKAR, HN
    XU, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) : 847 - 855
  • [5] Expansion by polynomials with respect to Freud-type weights
    Ditzian, Z.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 582 - 587
  • [6] Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials
    Hussin, V
    Marquette, I
    Zelaya, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (04)
  • [7] Linear Graininess Time Scales and Ladder Operators of Orthogonal Polynomials
    Filipuk, Galina
    Hilger, Stefan
    RESULTS IN MATHEMATICS, 2013, 64 (1-2) : 13 - 35
  • [8] Linear Graininess Time Scales and Ladder Operators of Orthogonal Polynomials
    Galina Filipuk
    Stefan Hilger
    Results in Mathematics, 2013, 64 : 13 - 35
  • [9] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    Afrika Matematika, 2019, 30 : 505 - 528
  • [10] Global Asymptotics of Orthogonal Polynomials Associated with a Generalized Freud Weight
    Wen, Zhi-Tao
    Wong, Roderick
    Xu, Shuai-Xia
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (03) : 553 - 596