Robust state feedback for uncertain 2-D discrete switched systems in the Roesser model

被引:6
作者
Badie, Khalid [1 ]
Alfidi, Mohammed [1 ]
Tadeo, Fernando [2 ,3 ]
Chalh, Zakaria [1 ]
机构
[1] Natl Sch Appl Sci, Engn Syst & Applicat Lab, My Abdallah Ave Km 5 Rd Imouzzer,BP 72, Fes, Morocco
[2] Univ Valladolid, Inst Sustainable Proc, Valladolid, Spain
[3] Univ Valladolid, Ind Engn Sch, Valladolid, Spain
关键词
2-D discrete switched systems; polytopic uncertainties; robust H-infinity control; linear matrix inequalities (LMIs); H-INFINITY CONTROL; STABILITY CONDITIONS; OUTPUT-FEEDBACK; DELAY SYSTEMS; TIME-SYSTEMS; STABILIZATION;
D O I
10.1080/23307706.2020.1803774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The design of robust H-infinity controllers is considered here for a class of two-dimensional (2-D) discrete switched systems described by the Roesser model with polytopic uncertainties. Attention focuses on the design of a switched state feedback controller, which guarantees the robust asymptotic stability and a prescribed H-infinity performance for the closed-loop system. By using multiple parameter-dependent Lyapunov functionals, and introducing some switched free-weighting matrices, a new sufficient condition for the robust H-infinity performance analysis of uncertain 2-D discrete switched systems is developed. Furthermore, the design of switched state feedback controller is proposed in terms of linear matrix inequalities (LMIs). Illustrative examples are given to illustrate the effectiveness of the developed theoretical results.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 30 条
[1]   On Stabilization of 2D Roesser Models [J].
Bachelier, Olivier ;
Yeganefar, Nima ;
Mehdi, Driss ;
Paszke, Wojciech .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) :2505-2511
[2]   LMI Stability Conditions for 2D Roesser Models [J].
Bachelier, Olivier ;
Paszke, Wojciech ;
Yeganefar, Nima ;
Mehdi, Driss ;
Cherifi, Abdelmadjid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (03) :766-770
[3]   Exponential stability analysis for 2D discrete switched systems with state delays [J].
Badie, Khalid ;
Alfidi, Mohammed ;
Chalh, Zakaria .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (06) :1088-1103
[4]   Delay-Dependent Stability and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Performance of 2-D Continuous Systems with Delays [J].
Khalid Badie ;
Mohammed Alfidi ;
Fernando Tadeo ;
Zakaria Chalh .
Circuits, Systems, and Signal Processing, 2018, 37 (12) :5333-5350
[5]   New Relaxed Stability Conditions for Uncertain Two-Dimensional Discrete Systems [J].
Badie K. ;
Alfidi M. ;
Chalh Z. .
Journal of Control, Automation and Electrical Systems, 2018, 29 (06) :661-669
[6]   New H∞ control approaches for interval time-delay systems with disturbances and their applications [J].
Bai, Yan ;
Li, Zhichen ;
Huang, Congzhi .
ISA TRANSACTIONS, 2016, 65 :174-185
[7]  
Benzaouia A, 2011, INT J INNOV COMPUT I, V7, P977
[8]   Stabilisation of discrete 2D time switching systems by state feedback control [J].
Benzaouia, Abdellah ;
Hmamed, Abdelaziz ;
Tadeo, Fernando ;
Hajjaji, Ahmed E. L. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (03) :479-487
[9]  
Boyd S, 1994, Linear Matrix Inequalities in System and Control Theory
[10]   Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J].
Branicky, MS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :475-482