Even-dimensional topological gravity from Chern-Simons gravity

被引:8
|
作者
Merino, N. [1 ]
Perez, A. [1 ,2 ]
Salgado, P. [1 ]
机构
[1] Univ Concepcion, Dept Fis, Concepcion, Chile
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
关键词
TENSOR;
D O I
10.1016/j.physletb.2009.10.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n + 1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n + 1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field phi(a), which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d - 1.1). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 50 条
  • [1] 4-DIMENSIONAL TOPOLOGICAL CONFORMAL GRAVITY FROM EVEN-DIMENSIONAL GENERALIZED CHERN-SIMONS ACTION
    KAWAMOTO, N
    WATABIKI, Y
    NUCLEAR PHYSICS B, 1993, 396 (01) : 326 - 364
  • [2] The coupling of Chern-Simons theory to topological gravity
    Imbimbo, Camillo
    NUCLEAR PHYSICS B, 2010, 825 (03) : 366 - 395
  • [3] CHERN-SIMONS GRAVITY FROM (3+1)-DIMENSIONAL GRAVITY
    GRIGNANI, G
    NARDELLI, G
    PHYSICS LETTERS B, 1993, 300 (1-2) : 38 - 43
  • [4] 2-DIMENSIONAL GRAVITY AS THE GAUGE-THEORY OF THE CLIFFORD-ALGEBRA FOR AN EVEN-DIMENSIONAL GENERALIZED CHERN-SIMONS ACTION
    KAWAMOTO, N
    WATABIKI, Y
    PHYSICAL REVIEW D, 1992, 45 (02): : 605 - 617
  • [5] Topological gravity and Chern-Simons forms in d=4
    Catalan, P.
    Izaurieta, F.
    Salgado, P.
    Salgado, S.
    PHYSICS LETTERS B, 2015, 751 : 205 - 208
  • [6] Critical gravity in the Chern-Simons modified gravity
    Moon, Taeyoon
    Myung, Yun Soo
    EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (11): : 1 - 6
  • [7] Canonical Chern-Simons gravity
    Sarkar, Souvik
    Vaz, Cenalo
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [8] Gravitational Chern-Simons, and Chern-Simons Gravity in All Dimensions
    Radu, Eugen
    Tchrakian, D. H.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 753 - 759
  • [9] Quantization of even-dimensional actions of Chern-Simons form with infinite reducibility
    Kawamoto, N
    Suehiro, K
    Tsukioka, T
    Umetsu, H
    NUCLEAR PHYSICS B, 1998, 532 (1-2) : 429 - 472
  • [10] Integrability in gravity from Chern-Simons theory
    Cole, Lewis T.
    Weck, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):