Development of mathematical transfer functions correlating Solid Oxide Fuel Cell degradation to operating conditions for Accelerated Stress Test protocols design

被引:13
作者
Polverino, Pierpaolo [1 ]
Gallo, Marco [1 ]
Pianese, Cesare [1 ]
机构
[1] Univ Salerno, Dept Ind Engn, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
Solid oxide fuel cell; Accelerated stress test; Multiscale modelling; Degradation rate estimation; Prognosis; Transfer functions; TRIPLE PHASE-BOUNDARY; LOCAL EVOLUTION; ANODE; PERFORMANCE; STACK; MODEL; ELECTROLYTE; MECHANISMS; AGGLOMERATION; INTERCONNECT;
D O I
10.1016/j.jpowsour.2021.229521
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work presents an innovative model-based approach for the development of mathematical transfer functions capable of correlating Solid Oxide Fuel Cells (SOFCs) degradation rate to the applied operating conditions. Such functions can be used for fuel cell lifetime prediction and Accelerated Stress Test (AST) protocols design. The proposed approach relies on multiscale modelling methodology and links local degradation to high level per-formance models to evaluate the key operating variables accelerating voltage decay over time. A thorough simulation analysis is performed to convey the correlation among operating variables and degradation rate into mathematical transfer functions. To better illustrate the overall design and application process of such functions, a case study accounting for Ni agglomeration is addressed. The multiscale modelling framework is applied to correlate microscale (i.e., Ni particles size change) and macroscale (i.e., SOFC voltage reduction) levels through the most affected mesoscale parameters. The model is then used to simulate voltage decay over time and link degradation rates to the applied operating conditions. Afterwards, a parametric analysis is performed to inves-tigate the influence exerted by each operating variable on the degradation rate and derive the transfer functions. An example of application for Accelerated Stress Test (AST) protocols design is then given.
引用
收藏
页数:15
相关论文
共 52 条
  • [1] [Anonymous], ECS T, V91
  • [2] Toward developing accelerated stress tests for proton exchange membrane electrolyzers
    Assmann, Pia
    Gago, Aldo Saul
    Gazdzicki, Pawel
    Friedrich, Kaspar Andreas
    Wark, Michael
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 225 - 233
  • [3] Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18000 hours
    Bianco, Manuel
    Ouweltjes, Jan Pieter
    Van herle, Jan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (59) : 31406 - 31422
  • [4] Long-term operation of solid oxide fuel cells and preliminary findings on accelerated testing
    Blum, Ludger
    Fang, Qingping
    Gross-Barsnick, Sonja M.
    de Haart, L. G. J.
    Malzbender, Juergen
    Menzler, Norbert H.
    Quadakkers, Willem J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) : 8955 - 8964
  • [5] Local Evolution of Triple Phase Boundary in Solid Oxide Fuel Cell Stack After Long-term Operation
    Brus, G.
    Iwai, H.
    Otani, Y.
    Saito, M.
    Yoshida, H.
    Szmyd, J. S.
    [J]. FUEL CELLS, 2015, 15 (03) : 545 - 548
  • [6] An Anisotropic Microstructure Evolution in a Solid Oxide Fuel Cell Anode
    Brus, Grzegorz
    Iwai, Hiroshi
    Szmyd, Janusz S.
    [J]. NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [7] Local evolution of anode microstructure morphology in a solid oxide fuel cell after long-term stack operation
    Brus, Grzegorz
    Iwai, Hiroshi
    Sciazko, Anna
    Saito, Motohiro
    Yoshida, Hideo
    Szmyd, Janusz S.
    [J]. JOURNAL OF POWER SOURCES, 2015, 288 : 199 - 205
  • [8] A Degradation Model for Solid Oxide Fuel Cell Anodes due to Impurities in Coal Syngas: Part I Theory and Validation
    Cayan, F. N.
    Pakalapati, S. R.
    Celik, I.
    Xu, C.
    Zondlo, J.
    [J]. FUEL CELLS, 2012, 12 (03) : 464 - 473
  • [9] Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell
    Chen, Daifen
    Bi, Wuxi
    Kong, Wei
    Lin, Zijing
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6598 - 6610
  • [10] Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes
    Chen, Daifen
    Lin, Zijing
    Zhu, Huayang
    Kee, Robert J.
    [J]. JOURNAL OF POWER SOURCES, 2009, 191 (02) : 240 - 252