Efficient Implementation and Numerical Analysis of Finite Element Method for Fractional Allen-Cahn Equation

被引:0
作者
Wang, Guozhen [1 ]
Chen, Huanzhen [1 ]
机构
[1] Shandong Normal Univ, Coll Math & Stat, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-FIELD MODEL; SIMULATIONS; MOTION; APPROXIMATION; HILLIARD; FLUIDS;
D O I
10.1155/2019/7969371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We embed the fractional Allen-Cahn equation into a Galerkin variational framework and thus develop its corresponding finite element procedure and then prove rigorously its mathematical and physical properties for the finite element solution. Combining the merits of the conjugate gradient (CG) algorithm and the Toeplitz structure of the coefficient matrix, we design a fast CG for the linearized finite element scheme to reduce the computation cost and the storage to O(MlogM) and O(M), respectively. Numerical experiments confirm that the proposed fast CG algorithm recognizes accurately the mass and energy dissipation, the phase separation through a very clear coarse graining process, and the influences of different indices r of fractional Laplacian and different coefficients K,eta on the width of the interfaces.
引用
收藏
页数:14
相关论文
共 30 条
[1]  
ADAMS R. A., 2003, SOBOLEV SPACES
[2]   Fractional Cahn-Hilliard, Allen-Calm and porous medium equations [J].
Akagi, Goro ;
Schimperna, Giulio ;
Segatti, Antonio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :2935-2985
[3]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[4]   Geometrical image segmentation by the Allen-Cahn equation [J].
Benes, M ;
Chalupecky, V ;
Mikula, K .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :187-205
[5]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[6]   Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation [J].
Chen, Huanzhen ;
Wang, Hong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 :480-498
[7]  
Davis P. J., 1979, Circulant Matrices
[8]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[9]   A phase field approach in the numerical study of the elastic bending energy for vesicle membranes [J].
Du, Q ;
Liu, C ;
Wang, XQ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) :450-468
[10]  
Ervin V. J., 2010, NUMER METH PART D E, V22, P558, DOI DOI 10.1002/num.20112