Bayesian Value-at-Risk and Expected Shortfall for a Large Portfolio (Multi- and Univariate Approaches)

被引:0
作者
Pajor, A. [1 ]
Osiewalski, J. [1 ]
机构
[1] Cracow Univ Econ, Dept Econometr & Operat Res, PL-31510 Krakow, Poland
关键词
MODELS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bayesian assessments of value-at-risk and expected shortfall for a given portfolio of dimension n can be based either on the n-variate predictive distribution of future returns of individual assets, or on the univariate model for portfolio volatility. In both cases, the Bayesian VaR and ES fully take into account parameter uncertainty and non-linear relationship between ordinary and logarithmic returns. We use the n-variate type I MSF-SBEKK(1,1) volatility model proposed specially to cope with large n. We compare empirical results obtained using this (more demanding) multivariate approach and the much simpler univariate approach based on modelling volatility of the whole portfolio (of a given structure).
引用
收藏
页码:B101 / B109
页数:9
相关论文
共 18 条
  • [1] [Anonymous], 2005, ANAL FINANCIAL TIME, DOI DOI 10.1002/0471746193
  • [2] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [3] Multivariate GARCH models: A survey
    Bauwens, L
    Laurent, S
    Rombouts, JVK
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2006, 21 (01) : 79 - 109
  • [4] Strategic long-term financial risks: Single risk factors
    Embrechts, P
    Kaufmann, R
    Patie, P
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 32 (1-2) : 61 - 90
  • [5] CAViaR: Conditional autoregressive value at risk by regression quantiles
    Engle, RF
    Manganelli, S
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2004, 22 (04) : 367 - 381
  • [6] Kaufmann R., 2003, Strategic long-term financial risks: the one-dimensional case
  • [7] Lee T.H., 2008, INT ENCYCL SOC SCI, V4, P495
  • [8] Lopez J., 1999, FEDERAL RESERVE BANK, V2, P3, DOI DOI 10.1086/250095
  • [9] McNeil A. J., 2000, J EMPIR FINANC, V7, P271, DOI [10.1016/S0927-5398(00)00012-8, DOI 10.1016/S0927-5398(00)00012-8]
  • [10] O'Hagan A., 1994, BAYESIAN INFERENCE