Chaos control on the repeated game model in electric power duopoly

被引:9
作者
Ma, Junhai [1 ,2 ]
Ji, Weizhuo [1 ]
机构
[1] Tianjin Univ, Sch Management, Tianjin 300072, Peoples R China
[2] Tianjin Univ Finance & Econ, Tianjin 300222, Peoples R China
关键词
electric power market; repeated game model; feedback control; parameter variation;
D O I
10.1080/00207160701335666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The chaos control method combining feedback control with parameter variation is successfully applied to the dynamic repeated Cournot model in electric power duopoly. Stability control of the period-doubling bifurcation and unstable periodic orbits in the chaotic attractor of the discrete non-linear dynamic system is achieved using this method, and the numerical simulation results show that this control method is effective. In practice, by utilizing the sensitivity of the model to disturbance, electric power producers could apply a small perturbation to the chaotic system and induce a large influence on electric output in order to obtain desirable behaviour.
引用
收藏
页码:961 / 967
页数:7
相关论文
共 10 条
  • [1] Complex dynamics and synchronization of a duopoly game with bounded rationality
    Agiza, HN
    Hegazi, AS
    Elsadany, AA
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (02) : 133 - 146
  • [2] Control of period-doubling bifurcation and chaos in a discrete nonlinear system by the feedback of states and parameter adjustment
    Luo, XS
    Chen, GR
    Wang, BH
    Fang, JQ
    Zou, YL
    Quan, HJ
    [J]. ACTA PHYSICA SINICA, 2003, 52 (04) : 790 - 794
  • [3] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199
  • [4] CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK
    PYRAGAS, K
    [J]. PHYSICS LETTERS A, 1992, 170 (06) : 421 - 428
  • [5] Model-free control of affine chaotic systems
    Qi, GY
    Chen, ZQ
    Yuan, ZZ
    [J]. PHYSICS LETTERS A, 2005, 344 (2-4) : 189 - 202
  • [6] On a four-dimensional chaotic system
    Qi, GY
    Du, SZ
    Chen, GR
    Chen, ZQ
    Yuan, ZZ
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1671 - 1682
  • [7] SHENG Z, 2001, INTRO NONLINEAR DYNA, P296
  • [8] Tao Y, 1997, PHYS LETT A, V232, P356
  • [9] Tong P., 1995, ACTA PHYS SINICA, V44, P169
  • [10] Impulsive synchronization of Lorenz systems
    Yang, T
    Yang, LB
    Yang, CM
    [J]. PHYSICS LETTERS A, 1997, 226 (06) : 349 - 354