A new error bound for reduced basis approximation of parabolic partial differential equations

被引:40
作者
Urban, Karsten [1 ]
Patera, Anthony T. [2 ]
机构
[1] Univ Ulm, Inst Numer Math, D-89081 Ulm, Germany
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1016/j.crma.2012.01.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant beta(delta): beta(delta) is unity for the heat equation; beta(delta) grows only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time alpha posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:203 / 207
页数:5
相关论文
共 8 条
[1]   A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations [J].
Grepl, MA ;
Patera, AT .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01) :157-181
[2]   Reduced basis method for finite volume approximations of parametrized linear evolution equations [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02) :277-302
[3]   REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS [J].
Knezevic, David J. ;
Ngoc-Cuong Nguyen ;
Patera, Anthony T. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (07) :1415-1442
[4]   Reduced-basis output bound methods for parabolic problems [J].
Rovas, D. V. ;
Machiels, L. ;
Maday, Y. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (03) :423-445
[5]   Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations [J].
Rozza, G. ;
Huynh, D. B. P. ;
Patera, A. T. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2008, 15 (03) :229-275
[6]   SPACE-TIME ADAPTIVE WAVELET METHODS FOR PARABOLIC EVOLUTION PROBLEMS [J].
Schwab, Christoph ;
Stevenson, Rob .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1293-1318
[7]  
Steih K., 2012, SPACE TIME REDUCED B
[8]  
Vallaghe S., HAL00609212