Green Tensor Analysis of Lattice Resonances in Periodic Arrays of Nanoparticles

被引:15
作者
Zundel, Lauren [1 ]
Cuartero-Gonzalez, Alvaro [2 ,3 ,4 ]
Sanders, Stephen [1 ]
Fernandez-Dominguez, Antonio, I [2 ,3 ]
Manjavacas, Alejandro [1 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87106 USA
[2] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[4] Univ Pontificia Comillas, ICAI, Mech Engn Dept, Madrid 28015, Spain
基金
美国国家科学基金会;
关键词
lattice resonances; periodic arrays; nanoparticle arrays; Green tensor; dipole-dipole coupling; quantum emitters; LOCAL-DENSITY; GOLD; NANOANTENNAS; SCATTERING; STATES; MODES;
D O I
10.1021/acsphotonics.1c01463
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
When arranged in a periodic geometry, arrays of metallic nanostructures are capable of supporting collective modes known as lattice resonances. These modes, which originate from the coherent multiple scattering between the elements of the array, give rise to very strong and spectrally narrow optical responses. Here, we show that, thanks to their collective nature, the lattice resonances of a periodic array of metallic nanoparticles can mediate an efficient long-range coupling between dipole emitters placed near the array. Specifically, using a coupled dipole approach, we calculate the Green tensor of the array connecting two points and analyze its spectral and spatial characteristics. This quantity represents the electromagnetic field produced by the array at a given position when excited by a unit dipole emitter located at another one. We find that, when a lattice resonance is excited, the Green tensor is significantly larger and decays more slowly with distance than the Green tensor of vacuum. Therefore, in addition to advancing the fundamental understanding of lattice resonances, our results show that periodic arrays of nanostructures are capable of enhancing the long-range coupling between collections of dipole emitters, which makes them a promising platform for applications such as nanoscale energy transfer and quantum information processing.
引用
收藏
页码:540 / 550
页数:11
相关论文
共 94 条
[1]   Near-Field Excitation of Bound States in the Continuum in All-Dielectric Metasurfaces through a Coupled Electric/Magnetic Dipole Model [J].
Abujetas, Diego R. ;
Sanchez-Gil, Jose A. .
NANOMATERIALS, 2021, 11 (04)
[2]   Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet Ali ;
Wu, Chih-Hui ;
Shvets, Gennady ;
Altug, Hatice .
OPTICS EXPRESS, 2010, 18 (05) :4526-4537
[3]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[4]   Quantum Metamaterials with Magnetic Response at Optical Frequencies [J].
Alaee, Rasoul ;
Gurlek, Burak ;
Albooyeh, Mohammad ;
Martin-Cano, Diego ;
Sandoghdar, Vahid .
PHYSICAL REVIEW LETTERS, 2020, 125 (06)
[5]   Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate [J].
Auguie, Baptiste ;
Bendana, Xesus M. ;
Barnes, William L. ;
Garcia de Abajo, F. Javier .
PHYSICAL REVIEW B, 2010, 82 (15)
[6]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[7]   Hybridization of Lattice Resonances [J].
Baur, Sebastian ;
Sanders, Stephen ;
Manjavacas, Alejandro .
ACS NANO, 2018, 12 (02) :1618-1629
[8]   Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array [J].
Bettles, Robert J. ;
Gardiner, Simon A. ;
Adams, Charles S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (10)
[9]   Ultra-high-Q resonances in plasmonic metasurfaces [J].
Bin-Alam, M. Saad ;
Reshef, Orad ;
Mamchur, Yaryna ;
Alam, M. Zahirul ;
Carlow, Graham ;
Upham, Jeremy ;
Sullivan, Brian T. ;
Menard, Jean-Michel ;
Huttunen, Mikko J. ;
Boyd, Robert W. ;
Dolgaleva, Ksenia .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]  
Boddeti A. K., 2021, NANO LETT