Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients

被引:88
作者
Shen, Yuan [1 ,2 ]
Tian, Bo [1 ,2 ]
Liu, Shao-Hua [1 ,2 ]
Zhou, Tian-Yu [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Shallow water wave; (3+1)-dimensional shallow water; Symbolic computation; Hirota method; Bilinear form; Soliton solutions; Breather solutions; Periodic-wave solutions; Hybrid solutions; LAX; KDV;
D O I
10.1007/s11071-022-07252-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Studies of the shallow water waves are active, possessing the applications in ocean engineering, marine environment, atmospheric science, etc. In this paper, we investigate a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Hirota method and symbolic computation help us work out (1) a bilinear form, (2) N-soliton solutions with N being a positive integer, (3) the higher-order breather solutions, (4) periodic-wave solutions and (5) hybrid solutions composed of one first-order breather and one soliton/two solitons. Moreover, we provide some nonlinear phenomena described by the associated solutions. All of the obtained results are determined via the time-dependent coefficients of that equation.
引用
收藏
页码:2447 / 2460
页数:14
相关论文
共 74 条
[1]   Derivative non-linear Schrodinger equation: Singular manifold method and Lie symmetries [J].
Albares, P. ;
Estevez, P. G. ;
Lejarreta, J. D. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 400
[2]   Modeling the motion of large vessels due to tsunami-induced currents [J].
Ayca, Aykut ;
Lynett, Patrick J. .
OCEAN ENGINEERING, 2021, 236
[3]   Nonlinear dynamics of nonautonomous solitons in external potentials expressed by time-varying power series: exactly solvable higher-order nonlinear and dispersive models [J].
Belyaeva, T. L. ;
Serkin, V. N. .
NONLINEAR DYNAMICS, 2022, 107 (01) :1153-1162
[4]   Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions [J].
Cardoso, W. B. ;
Avelar, A. T. ;
Bazeia, D. .
NONLINEAR DYNAMICS, 2021, 106 (04) :3469-3477
[5]   Conservative local discontinuous Galerkin methods for a generalized system of strongly coupled nonlinear Schrodinger equations [J].
Castillo, Paul ;
Gomez, Sergio .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 99
[6]   Directional soliton and breather beams [J].
Chabchoub, Amin ;
Mozumi, Kento ;
Hoffmann, Norbert ;
Babanin, Alexander V. ;
Toffoli, Alessandro ;
Steer, James N. ;
van den Bremer, Ton S. ;
Akhmediev, Nail ;
Onorato, Miguel ;
Waseda, Takuji .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (20) :9759-9763
[7]   Normal form for the onset of collapse: The prototypical example of the nonlinear Schrodinger equation [J].
Chapman, S. J. ;
Kavousanakis, M. ;
Kevrekidis, I. G. ;
Kevrekidis, P. G. .
PHYSICAL REVIEW E, 2021, 104 (04)
[8]   Long-time asymptotics for an integrable evolution equation with a 3 x 3 Lax pair [J].
Charlier, C. ;
Lenells, J. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 426
[9]   Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrodinger equation [J].
Chen, Jinbing ;
Pelinovsky, Dmitry E. .
PHYSICAL REVIEW E, 2021, 103 (06)
[10]   Rigorous justification of the Whitham modulation theory for equations of NLS type [J].
Clarke, W. A. ;
Marangell, R. .
STUDIES IN APPLIED MATHEMATICS, 2021, 147 (02) :577-621