ON THE DISTANCE BETWEEN GENERALIZED FIBONACCI NUMBERS

被引:4
作者
Bravo, Jhon J. [1 ]
Gomez, Carlos A. [2 ]
Luca, Florian [3 ]
机构
[1] Univ Cauca, Dept Matemat, Popayan, Colombia
[2] Univ Valle, Dept Matemat, Cali, Colombia
[3] Univ Witwatersrand, ZA-2050 Johannesburg, South Africa
关键词
generalized Fibonacci numbers; linear forms in logarithms; Sidon sets; CONJECTURE;
D O I
10.4064/cm140-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k >= 2, let (F-n((k)))(n) be the k-Fibonacci sequence which starts with 0, ..., 0, 1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 11 条
[1]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[2]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[3]   Coincidences in generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :2121-2137
[4]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[5]  
Howard FT, 2011, FIBONACCI QUART, V49, P231
[6]  
Hua L.K., 1981, Applications of Number Theory to Numerical Analysis
[7]   ON THE SPACING BETWEEN TERMS OF GENERALIZED FIBONACCI SEQUENCES [J].
Marques, Diego .
COLLOQUIUM MATHEMATICUM, 2014, 134 (02) :267-280
[8]   The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences [J].
Marques, Diego .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03) :455-468
[9]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269