Convergence of the quantum Navier-Stokes-Poisson equations to the incompressible Euler equations for general initial data

被引:12
作者
Yang, Jianwei [1 ]
Ju, Qiangchang [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450045, Henan Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum Navier Stokes Poisson equations; Incompressible Euler equations; Quasi-neutral limit; Inviscid limit; Vanishing damping coefficient; HYDRODYNAMIC EQUATIONS; WEAK SOLUTIONS; SYSTEM; MODEL; DERIVATION; EXISTENCE; LIMIT;
D O I
10.1016/j.nonrwa.2014.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the rigorous proof of the convergence of the quantum Navier-Stokes-Poisson system to the incompressible Euler equations via the combined quasi-neutral, vanishing damping coefficient and inviscid limits in the three-dimensional torus for general initial data. Furthermore, the convergence rates are obtained. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 27 条
[1]   Nonlocal plasmon excitation in metallic nanostructures [J].
Ali, S. ;
Tercas, H. ;
Mendonca, J. T. .
PHYSICAL REVIEW B, 2011, 83 (15)
[2]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[3]   Derivation of viscous correction terms for the isothermal quantum Euler model [J].
Brull, S. ;
Mehats, F. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (03) :219-230
[4]   The viscous model of quantum hydrodynamics in several dimensions [J].
Chen, Li ;
Dreher, Michael .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (07) :1065-1093
[5]   EXISTENCE RESULTS FOR A NONLINEAR ELLIPTIC SYSTEM MODELING A TEMPERATURE-DEPENDENT ELECTRICAL RESISTOR [J].
CIMATTI, G ;
PRODI, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :227-236
[6]   Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films [J].
Crouseilles, N. ;
Hervieux, P. -A. ;
Manfredi, G. .
PHYSICAL REVIEW B, 2008, 78 (15)
[7]   A note on barotropic compressible quantum Navier-Stokes equations [J].
Dong, Jianwei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) :854-856
[8]   FORM OF THE QUANTUM POTENTIAL FOR USE IN HYDRODYNAMIC EQUATIONS FOR SEMICONDUCTOR-DEVICE MODELING [J].
FERRY, DK ;
ZHOU, JR .
PHYSICAL REVIEW B, 1993, 48 (11) :7944-7950
[9]   Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations [J].
Gamba, Irene M. ;
Juengel, Ansgar ;
Vasseur, Alexis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (11) :3117-3135
[10]   PRESSURE AND STRESS TENSOR EXPRESSIONS IN FLUID MECHANICAL FORMULATION OF BOSE CONDENSATE EQUATIONS [J].
GRANT, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (11) :L151-L153