Tensor-Train decomposition for image recognition

被引:5
作者
Brandoni, D. [1 ]
Simoncini, V [1 ,2 ,3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, Bologna, Italy
[2] Univ Bologna, AM2, Piazza Porta San Donato 5, Bologna, Italy
[3] CNR, IMATI, Pavia, Italy
关键词
Tensor-Train; Tensor decomposition; HOSVD; Image classification; Face recognition;
D O I
10.1007/s10092-020-0358-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the potential of Tensor-Train (TT) decompositions in the context of multi-feature face or object recognition strategies. We devise a new recognition algorithm that can handle three or more way tensors in the TT format, and propose a truncation strategy to limit memory usage. Numerical comparisons with other related methods-including the well established recognition algorithm based on high-order SVD-illustrate the features of the various strategies on benchmark datasets.
引用
收藏
页数:24
相关论文
共 25 条
[1]  
[Anonymous], ECML PKDD WORKSH
[2]  
[Anonymous], 2008, Recent Advances in Face Recognition
[3]  
[Anonymous], ARXIV150906569
[4]  
[Anonymous], ARXIV160909230
[5]  
[Anonymous], 2013, Matrix Computations
[6]  
[Anonymous], ARXIV14034462
[7]  
[Anonymous], 2017, ARXIV170701786
[8]  
Bader B. W., 2017, MATLAB tensor toolbox version 3.0-dev
[9]  
BOUSSELHAM M, 2017, 2017 INT C SOFT COMP, P1, DOI DOI 10.1109/ICSOFTCOMP.2017.8280084
[10]   Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method [J].
Ceulemans, E ;
Kiers, HAL .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 :133-150