Ontogeny and function of the circadian clock in intestinal organoids

被引:33
作者
Rosselot, Andrew E. [1 ]
Park, Miri [1 ]
Kim, Mari [1 ]
Matsu-Ura, Toru [1 ]
Wu, Gang [2 ]
Flores, Danilo E. [2 ]
Subramanian, Krithika R. [1 ]
Lee, Suengwon [1 ]
Sundaram, Nambirajan [3 ]
Broda, Taylor R. [4 ]
McCauley, Heather A. [4 ]
Hawkins, Jennifer A. [3 ]
Chetal, Kashish [5 ]
Salomonis, Nathan [5 ]
Shroyer, Noah F. [6 ]
Helmrath, Michael A. [3 ,4 ]
Wells, James M. [4 ,7 ]
Hogenesch, John B. [2 ,8 ]
Moore, Sean R. [9 ]
Hong, Christian, I [1 ,4 ,8 ,10 ]
机构
[1] Univ Cincinnati, Dept Pharmacol & Syst Physiol, Cincinnati, OH 45221 USA
[2] Cincinnati Childrens Hosp Med Ctr, Ctr Chronobiol, Dept Pediat, Div Human Genet & Immunobiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Dept Pediat Surg, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Stem Cell & Organoid Med, Div Dev Biol, Cincinnati, OH 45229 USA
[5] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[6] Baylor Coll Med, Gastroenterol & Hepatol, Houston, TX 77030 USA
[7] Cincinnati Childrens Hosp Med Ctr, Div Endocrinol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Ctr Chronobiol, Cincinnati, OH 45229 USA
[9] Univ Virginia, Sch Med, Dept Pediat, Div Pediat Gastroenterol Hepatol & Nutr, Charlottesville, VA 22908 USA
[10] Cincinnati Childrens Hosp Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
基金
巴西圣保罗研究基金会;
关键词
circadian rhythms; Clostridium difficile toxin B; human enteroids; intestinal organoids; Rac1; CLOSTRIDIUM-DIFFICILE; SUPRACHIASMATIC NUCLEUS; MODELING DEVELOPMENT; DIFFERENTIAL CONTROL; GENE-EXPRESSION; CELL-CYCLE; REV-ERB; MICROBIOTA; RHYTHMS; INFECTION;
D O I
10.15252/embj.2020106973
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that similar to 3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] CIRCADIAN RHYTHMS, THE MOLECULAR CLOCK, AND SKELETAL MUSCLE
    Lefta, Mellani
    Wolff, Gretchen
    Esser, Karyn A.
    CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY: MYOGENESIS, 2011, 96 : 231 - 271
  • [42] THE CROSSTALK BETWEEN PHYSIOLOGY AND CIRCADIAN CLOCK PROTEINS
    Duguay, David
    Cermakian, Nicolas
    CHRONOBIOLOGY INTERNATIONAL, 2009, 26 (08) : 1479 - 1513
  • [43] Transcriptional feedback loops in the ovine circadian clock
    Dardente, Hugues
    Fustin, Jean-Michel
    Hazlerigg, David G.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153 (04): : 391 - 398
  • [44] The role of the circadian clock system in nutrition and metabolism
    Cagampang, Felino R.
    Bruce, Kimberley D.
    BRITISH JOURNAL OF NUTRITION, 2012, 108 (03) : 381 - 392
  • [45] The Circadian Clock Gates the Intestinal Stem Cell Regenerative State
    Karpowicz, Phillip
    Zhang, Yong
    Hogenesch, John B.
    Emery, Patrick
    Perrimon, Norbert
    CELL REPORTS, 2013, 3 (04): : 996 - 1004
  • [46] Vasculature on the clock: Circadian rhythm and vascular dysfunction
    Crnko, Sandra
    Cour, Martin
    van Laake, Linda W.
    Lecour, Sandrine
    VASCULAR PHARMACOLOGY, 2018, 108 : 1 - 7
  • [47] The role of circadian clock pathways in viral replication
    Zhuang, Xiaodong
    Edgar, Rachel S.
    McKeating, Jane A.
    SEMINARS IN IMMUNOPATHOLOGY, 2022, 44 (02) : 175 - 182
  • [48] Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice
    Pastore, Stephen
    Hood, David A.
    JOURNAL OF APPLIED PHYSIOLOGY, 2013, 114 (08) : 1076 - 1084
  • [49] COCAINE MODULATES MAMMALIAN CIRCADIAN CLOCK TIMING BY DECREASING SEROTONIN TRANSPORT IN THE SCN
    Prosser, R. A.
    Stowie, A.
    Amicarelli, M.
    Nackenoff, A. G.
    Blakely, R. D.
    Glass, J. D.
    NEUROSCIENCE, 2014, 275 : 184 - 193
  • [50] NEURAL ACTIVITY IN THE SUPRACHIASMATIC CIRCADIAN CLOCK OF NOCTURNAL MICE ANTICIPATING A DAYTIME MEAL
    Dattolo, T.
    Coomans, C. P.
    Van Diepen, H. C.
    Patton, D. F.
    Power, S.
    Antle, M. C.
    Meijer, J. H.
    Mistlberger, R. E.
    NEUROSCIENCE, 2016, 315 : 91 - 103