Ontogeny and function of the circadian clock in intestinal organoids

被引:33
|
作者
Rosselot, Andrew E. [1 ]
Park, Miri [1 ]
Kim, Mari [1 ]
Matsu-Ura, Toru [1 ]
Wu, Gang [2 ]
Flores, Danilo E. [2 ]
Subramanian, Krithika R. [1 ]
Lee, Suengwon [1 ]
Sundaram, Nambirajan [3 ]
Broda, Taylor R. [4 ]
McCauley, Heather A. [4 ]
Hawkins, Jennifer A. [3 ]
Chetal, Kashish [5 ]
Salomonis, Nathan [5 ]
Shroyer, Noah F. [6 ]
Helmrath, Michael A. [3 ,4 ]
Wells, James M. [4 ,7 ]
Hogenesch, John B. [2 ,8 ]
Moore, Sean R. [9 ]
Hong, Christian, I [1 ,4 ,8 ,10 ]
机构
[1] Univ Cincinnati, Dept Pharmacol & Syst Physiol, Cincinnati, OH 45221 USA
[2] Cincinnati Childrens Hosp Med Ctr, Ctr Chronobiol, Dept Pediat, Div Human Genet & Immunobiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Dept Pediat Surg, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Stem Cell & Organoid Med, Div Dev Biol, Cincinnati, OH 45229 USA
[5] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[6] Baylor Coll Med, Gastroenterol & Hepatol, Houston, TX 77030 USA
[7] Cincinnati Childrens Hosp Med Ctr, Div Endocrinol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Ctr Chronobiol, Cincinnati, OH 45229 USA
[9] Univ Virginia, Sch Med, Dept Pediat, Div Pediat Gastroenterol Hepatol & Nutr, Charlottesville, VA 22908 USA
[10] Cincinnati Childrens Hosp Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
基金
巴西圣保罗研究基金会;
关键词
circadian rhythms; Clostridium difficile toxin B; human enteroids; intestinal organoids; Rac1; CLOSTRIDIUM-DIFFICILE; SUPRACHIASMATIC NUCLEUS; MODELING DEVELOPMENT; DIFFERENTIAL CONTROL; GENE-EXPRESSION; CELL-CYCLE; REV-ERB; MICROBIOTA; RHYTHMS; INFECTION;
D O I
10.15252/embj.2020106973
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that similar to 3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function
    Young, Martin E.
    JOURNAL OF APPLIED PHYSIOLOGY, 2009, 107 (04) : 1339 - 1347
  • [22] Embryonic development and maternal regulation of murine circadian clock function
    Landgraf, Dominic
    Achten, Christian
    Dallmann, Franziska
    Oster, Henrik
    CHRONOBIOLOGY INTERNATIONAL, 2015, 32 (03) : 416 - 427
  • [23] Traumatic brain injury-induced disruption of the circadian clock
    Kuo, Lu-Ting
    Lu, Hsueh-Yi
    Chen, Yi-Hsing
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2024, 102 (03): : 403 - 414
  • [24] The circadian clock: a framework linking metabolism, epigenetics and neuronal function
    Masri, Selma
    Sassone-Corsi, Paolo
    NATURE REVIEWS NEUROSCIENCE, 2013, 14 (01) : 69 - 75
  • [25] Evidence for an internal and functional circadian clock in rat pituitary cells
    Becquet, Denis
    Boyer, Benedicte
    Rasolonjanahary, Ramahefarizo
    Brue, Thierry
    Guillen, Severine
    Moreno, Mathias
    Franc, Jean-Louis
    Francois-Bellan, Anne-Marie
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2014, 382 (02) : 888 - 898
  • [26] Molecular clock is involved in predictive circadian adjustment of renal function
    Zuber, Annie Mercier
    Centeno, Gabriel
    Pradervand, Sylvain
    Nikolaeva, Svetlana
    Maquelin, Lionel
    Cardinaux, Leonard
    Bonny, Olivier
    Firsov, Dmitri
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (38) : 16523 - 16528
  • [27] Circadian clock genes and implications for intestinal nutrient uptake
    Balakrishnan, Anita
    Tavakkolizadeh, Ali
    Rhoads, David B.
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2012, 23 (05) : 417 - 422
  • [28] Regulation of tissue regeneration by the circadian clock
    Ruby, Christina L.
    Major, Robert J.
    Hinrichsen, Robert D.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2021, 53 (11) : 3576 - 3597
  • [29] A role for microRNAs in the Drosophila circadian clock
    Kadener, Sebastian
    Menet, Jerome S.
    Sugino, Ken
    Horwich, Michael D.
    Weissbein, Uri
    Nawathean, Pipat
    Vagin, Vasia V.
    Zamore, Phillip D.
    Nelson, Sacha B.
    Rosbash, Michael
    GENES & DEVELOPMENT, 2009, 23 (18) : 2179 - 2191
  • [30] Circadian clock proteins in mood regulation
    Partonen, Timo
    FRONTIERS IN PSYCHIATRY, 2015, 5 : 195