IS RIS-Aided Massive MIMO Promising With ZF Detectors and Imperfect CSI?

被引:37
作者
Zhi, Kangda [1 ]
Pan, Cunhua [2 ]
Zhou, Gui [1 ]
Ren, Hong [2 ]
Elkashlan, Maged [1 ]
Schober, Robert [3 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Digital Commun, D-91054 Erlangen, Germany
基金
中国国家自然科学基金;
关键词
Reconfigurable intelligent surface (RIS); intelligent reflecting surface (IRS); massive MIMO; majorization-minimization (MM); ZF; imperfect CSI; INTELLIGENT REFLECTING SURFACE; CHANNEL ESTIMATION; SYSTEMS; DESIGN; ENERGY;
D O I
10.1109/JSAC.2022.3196097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides a theoretical framework for understanding the performance of reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) with zero-forcing (ZF) detectors under imperfect channel state information (CSI). We first introduce a low-overhead minimum mean square error (MMSE) channel estimator, and then derive and analyze closed-form expressions for the uplink achievable rate. Our analytical results demonstrate that: 1) regardless of the RIS phase shift design, the rate of all users scales at least on the order of O (log(2)(M N)), where M and N are the numbers of antennas and reflecting elements, respectively; 2) by aligning the RIS phase shifts to one user, the rate of this user can at most scale on the order of O (log(2) (MN2)); 3) either M or the transmit power can be reduced inversely proportional to N, while maintaining a given rate. Furthermore, we propose two low-complexity majorization-minimization (MM)-based algorithms to optimize the sum user rate and the minimum user rate, respectively, where closed-form solutions are obtained in each iteration. Finally, simulation results validate the accuracy of all derived analytical results. Our simulation results also show that the maximum sum rate can be closely approached by simply aligning the RIS phase shifts to an arbitrary user.
引用
收藏
页码:3010 / 3026
页数:17
相关论文
共 51 条
[11]   Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems [J].
Hien Quoc Ngo ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (04) :1436-1449
[12]   Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication [J].
Huang, Chongwen ;
Zappone, Alessio ;
Alexandropoulos, George C. ;
Debbah, Merouane ;
Yuen, Chau .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4157-4170
[13]   An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms [J].
Jacobson, Matthew W. ;
Fessler, Jeffrey A. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2411-2422
[14]  
Jensen TL, 2020, INT CONF ACOUST SPEE, P5000, DOI [10.1109/ICASSP40776.2020.9053695, 10.1109/icassp40776.2020.9053695]
[15]   On the ergodic capacity of rank-1 Ricean-fading MIMO channels [J].
Jin, Shi ;
Gao, Xiqi ;
You, Xiaohu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) :502-517
[16]   IRS-Aided Wireless Relaying: Deployment Strategy and Capacity Scaling [J].
Kang, Zhenyu ;
You, Changsheng ;
Zhang, Rui .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (02) :215-219
[17]  
Kay S. M., 1993, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, VI
[18]   Spectral Efficiency Analysis of Cell-Free Massive MIMO Systems With Zero-Forcing Detector [J].
Liu, Pei ;
Luo, Kai ;
Chen, Da ;
Jiang, Tao .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) :795-807
[19]   An Overview of Massive MIMO: Benefits and Challenges [J].
Lu, Lu ;
Li, Geoffrey Ye ;
Swindlehurst, A. Lee ;
Ashikhmin, Alexei ;
Zhang, Rui .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :742-758
[20]  
Lutkepohl H, 1997, Computational statistics and Data analysis, V25, P243