Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater

被引:27
作者
Boehling, Peter [1 ]
Khinast, Johannes G. [1 ,2 ]
Jajcevic, Dalibor [1 ]
Davies, Conrad [3 ]
Carmody, Alan [3 ]
Doshi, Pankaj [4 ]
Ende, Mary T. Am [4 ]
Sarkar, Avik [4 ]
机构
[1] Res Ctr Pharmaceut Engn GmbH, Graz, Austria
[2] Graz Univ Technol, Inst Proc & Particle Engn, Graz, Austria
[3] Pfizer Inc, Worldwide Res & Dev, Sandwich, Kent, England
[4] Pfizer Inc, Worldwide Res & Dev, Groton, CT 06340 USA
关键词
coating; fluid bed; powder technology(s); mathematical model(s); residence time(s); RESIDENCE TIME DISTRIBUTIONS; DEM SIMULATION; HEAT-TRANSFER; PARTICLES; PEPT; FLOW;
D O I
10.1016/j.xphs.2018.10.016
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Large-scale fluid bed coating operations using Wurster coaters are common in the pharmaceutical industry. Experimental measurements of the coating thickness are usually analyzed for just few particles. To better predict the coating uniformity of the entire batch, computational techniques can be applied for process understanding of the key process parameters that influence the quality attributes. Recent advances in computational hardware, such as graphics processing unit, have enabled simulations of large industrial-scale systems. In this work, we perform coupled computational fluid dynamics-discrete element method simulations of a large-scale coater that model the actual particle sizes. The influence of process parameters, inlet air flow rate, atomizing air flow rate, bead size distribution, and Wurster gap height is studied. The focus of this study is to characterize the flow inside the coater; eventually, this information will be used to predict the coating uniformity of the beads. We report the residence time distribution of the beads inside the Wurster column, that is, the active coating zone, which serves as a proxy for the amount of coating received by the beads per pass. The residence time provides qualitative and quantitative measurements of the particle-coating uniformity. We find that inlet air flow rate has the largest impact on the flow behavior and, hence, the coating uniformity. (C) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:538 / 550
页数:13
相关论文
共 39 条
[1]   Simulation of a tablet coating process at different scales using DEM [J].
Boehling, P. ;
Toschkoff, G. ;
Just, S. ;
Knop, K. ;
Kleinebudde, P. ;
Funke, A. ;
Rehbaum, H. ;
Rajniak, P. ;
Khinast, J. G. .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 93 :74-83
[2]   Analysis of large-scale tablet coating: Modeling, simulation and experiments [J].
Boehling, P. ;
Toschkoff, G. ;
Knop, K. ;
Kleinebudde, P. ;
Just, S. ;
Funke, A. ;
Rehbaum, H. ;
Khinast, J. G. .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 90 :14-24
[3]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[4]   Review of discrete particle modeling of fluidized beds [J].
Deen, N. G. ;
Annaland, M. Van Sint ;
Van der Hoef, M. A. ;
Kuipers, J. A. M. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :28-44
[5]   PEPT visualisation of particle motion in a tapered fluidised bed coater [J].
Depypere, F. ;
Pieters, J. G. ;
Dewettinck, K. .
JOURNAL OF FOOD ENGINEERING, 2009, 93 (03) :324-336
[6]   A BUBBLING FLUIDIZATION MODEL USING KINETIC-THEORY OF GRANULAR FLOW [J].
DING, J ;
GIDASPOW, D .
AICHE JOURNAL, 1990, 36 (04) :523-538
[7]  
ERGUN S, 1952, CHEM ENG PROG, V48, P89
[8]  
Fitzpatrick S., 2003, PHARM TECH, P70
[9]   DEM-CFD modeling of a fluidized bed spray granulator [J].
Fries, L. ;
Antonyuk, S. ;
Heinrich, S. ;
Palzer, S. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (11) :2340-2355
[10]   Collision dynamics in fluidised bed granulators: A DEM-CFD study [J].
Fries, Lennart ;
Antonyuk, Sergiy ;
Heinrich, Stefan ;
Dopfer, Daniel ;
Palzer, Stefan .
CHEMICAL ENGINEERING SCIENCE, 2013, 86 :108-123