Nonexistence of global solutions of a nonlinear hyperbolic system

被引:24
作者
Deng, K
机构
关键词
D O I
10.1090/S0002-9947-97-01841-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the initial value problem u(tt) = Delta u + \v\(p), v(tt) = Delta v + \u\(q), x is an element of R-n, t > 0, u(x, 0) = f(x), v(x, 0) = h(x), u(t)(x, 0) = g(x), v(t)(x, o) = k(x), with 1 less than or equal to n less than or equal to 3 and p, q > 0. We show that there exists a bound B(n) (less than or equal to infinity) such that if 1 < pq < B(n) all nontrivial solutions with compact support blow up in finite time.
引用
收藏
页码:1685 / 1696
页数:12
相关论文
共 14 条