Nonexistence of global solutions of a nonlinear hyperbolic system

被引:24
作者
Deng, K
机构
关键词
D O I
10.1090/S0002-9947-97-01841-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the initial value problem u(tt) = Delta u + \v\(p), v(tt) = Delta v + \u\(q), x is an element of R-n, t > 0, u(x, 0) = f(x), v(x, 0) = h(x), u(t)(x, 0) = g(x), v(t)(x, o) = k(x), with 1 less than or equal to n less than or equal to 3 and p, q > 0. We show that there exists a bound B(n) (less than or equal to infinity) such that if 1 < pq < B(n) all nontrivial solutions with compact support blow up in finite time.
引用
收藏
页码:1685 / 1696
页数:12
相关论文
共 14 条
[1]  
[Anonymous], THESIS INDIANA U BLO
[2]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[3]  
Fujita H., 1966, J FAC SCI U TOKYO IA, V16, P105
[4]   FINITE-TIME BLOW-UP FOR SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) :323-340
[5]   EXISTENCE IN THE LARGE FOR CLASS U = F (U) IN 2 SPACE DIMENSIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :233-261
[6]  
Jerome J.W., 1983, MATH SCI ENG, V164
[8]  
KATO T, 1980, COMMUN PUR APPL MATH, V32, P501
[9]  
Klainerman S., 1986, Lectures in Appl. Math., V23, P293
[10]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21