Models for the survival of species dependent on resource in industrial environments

被引:26
作者
Dubey, B [1 ]
Das, B [1 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sch Sci & Technol, Sonitpur 784001, Assam, India
关键词
D O I
10.1006/jmaa.1998.6221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a mathematical model to study the survival of species dependent on a resource under the industrialization pressure in a given region with diffusion is proposed and analyzed. In the absence of diffusion, criteria for local stability, instability, and global stability are obtained. A model to conserve the resource biomass and to control the undesired level of industrialization pressure is also presented. (C) 1999 Academic Press.
引用
收藏
页码:374 / 396
页数:23
相关论文
共 12 条
[1]  
FREEDMAN HI, 1989, NAT RES MODEL, V3, P359
[2]  
Freedman HI., 1987, DETERMINISTIC MATH M, V2
[3]  
HASTINGS A, 1978, J MATH BIOL, V6, P163, DOI 10.1007/BF02450786
[4]  
KORMONDY EJ, 1986, CONCEPT ECOLOGY
[5]  
LaSalle J., 1961, Mathematics in science andengineering
[6]  
Munn R.E., 1986, ENV ASSESSMENT IIASA, V1
[7]  
QUADDUS MA, 1985, SOCIOECON PLANN SCI, V20, P201
[8]  
RAO MRM, 1981, ORINDARY DIFFERENTIA
[9]   CONVERGENCE TO EQUILIBRIUM STATE IN VOLTERRA-LOTKA DIFFUSION EQUATIONS [J].
ROTHE, F .
JOURNAL OF MATHEMATICAL BIOLOGY, 1976, 3 (3-4) :319-324
[10]   DEGRADATION AND SUBSEQUENT REGENERATION OF A FORESTRY RESOURCE - A MATHEMATICAL-MODEL [J].
SHUKLA, JB ;
FREEDMAN, HI ;
PAL, VN ;
MISRA, OP ;
AGARWAL, M ;
SHUKLA, A .
ECOLOGICAL MODELLING, 1989, 44 (3-4) :219-229