NH2OH-Mediated Lignin Conversion to Isoxazole and Nitrile

被引:40
作者
Li, Hongji [1 ,2 ]
Wang, Min [1 ]
Liu, Huifang [1 ,2 ]
Luo, Nengchao [1 ,2 ]
Lu, Jianmin [1 ]
Zhang, Chaofeng [1 ]
Wang, Feng [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignin; Oxime; Aromatic isoxazole; Aromatic nitrile; Hydroxylamine; O BOND-CLEAVAGE; MODEL COMPOUNDS; C-C; SELECTIVE OXIDATION; ALCOHOL OXIDATION; PHENOLIC MONOMERS; ARYL NITRILES; METHYL ARENES; DEPOLYMERIZATION; CATALYSTS;
D O I
10.1021/acssuschemeng.7b04114
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conversion of lignin to aromatic compounds via C-C/C-O bond cleavage has been an attractive but challenging subject in recent years. We herein report the first protocol that converts lignin models and preoxidized lignin to isoxazole and aromatic nitrile. The isoxazole motif is constructed by condensation of beta-hydroxyl ketone with hydroxylamine. Magnesium oxide promotes an oximation reaction and an intramolecular condensation. Aromatic nitriles and esters are obtained via Beckmann rearrangement or an acidolysis reaction depending on the selected additive. The hydroxylamine-mediated strategy works well for the preoxidized lignin conversion to aromatic isoxazole, nitrile, and ester monomers with up to 7.6% yield.
引用
收藏
页码:3748 / 3753
页数:11
相关论文
共 48 条
[1]   Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones [J].
Biannic, Berenger ;
Bozell, Joseph J. ;
Elder, Thomas .
GREEN CHEMISTRY, 2014, 16 (07) :3635-3642
[2]   Redox Catalysis Facilitates Lignin Depolymerization [J].
Bosque, Irene ;
Magallanes, Gabriel ;
Rigoulet, Mathilde ;
Karkas, Markus D. ;
Stephenson, Corey R. J. .
ACS CENTRAL SCIENCE, 2017, 3 (06) :621-628
[3]  
Bruijnincx PCA, 2015, GREEN CHEM, V17, P4860, DOI [10.1039/C5GC90055G, 10.1039/c5gc90055g]
[4]   Selective Aerobic Benzylic Alcohol Oxidation of Lignin Model Compounds: Route to Aryl Ketones [J].
Dawange, Monali ;
Galkin, Maxim V. ;
Samec, Joseph S. M. .
CHEMCATCHEM, 2015, 7 (03) :401-404
[5]  
Dence C. W., 1992, METHODS LIGNIN CHEM, P448
[6]  
Deng WP, 2015, GREEN CHEM, V17, P5009, DOI [10.1039/C5GC01473E, 10.1039/c5gc01473e]
[7]   Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin [J].
Deuss, Peter J. ;
Scott, Martin ;
Tran, Fanny ;
Westwood, Nicholas J. ;
de Vries, Johannes G. ;
Barta, Katalin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (23) :7456-7467
[8]   Determination of carbonyl groups of six round robin lignins by modified oximation and FTIR spectroscopy [J].
Faix, O ;
Andersons, B ;
Zakis, G .
HOLZFORSCHUNG, 1998, 52 (03) :268-274
[9]   Copper-Catalyzed Decarboxylative CN Triple Bond Formation: Direct Synthesis of Benzonitriles from Phenylacetic Acids Under O2 Atmosphere [J].
Feng, Qiang ;
Song, Qiuling .
ADVANCED SYNTHESIS & CATALYSIS, 2014, 356 (08) :1697-1702
[10]   Cascade oxime formation, cyclization to a nitrone, and intermolecular dipolar cycloaddition [J].
Furnival, Rachel C. ;
Saruengkhanphasit, Rungroj ;
Holberry, Heather E. ;
Shewring, Jonathan R. ;
Guerrand, Helene D. S. ;
Adams, Harry ;
Coldham, Iain .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2016, 14 (46) :10953-10962