Characteristic exponents of the Jacobi Perron algorithm and of the associated map

被引:21
作者
Broise-Alamichel, A
Guivarc'h, Y
机构
[1] Univ Paris 11, CNRS, UMR 8628, F-91405 Orsay, France
[2] Univ Rennes 1, CNRS, UMR 6625, IRMAR, F-35042 Rennes, France
关键词
D O I
10.5802/aif.1832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, for every dimension d, the Lyapunov exponents of the Jacobi-Perron algorithm are all different, and that the sum of the extreme exponents is strictly positive. Especially, if d = 2, the second exponent is strictly negative.
引用
收藏
页码:565 / +
页数:123
相关论文
共 45 条
[1]  
ARNOUX P, 1993, ANN SCI ECOLE NORM S, V26, P645
[2]   RECURRENCE OF CO-CYCLES AND RANDOM-WALKS [J].
ATKINSON, G .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (AUG) :486-488
[3]   A MULTIDIMENSIONAL CONTINUED-FRACTION AND SOME OF ITS STATISTICAL PROPERTIES [J].
BALDWIN, PR .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1463-1505
[4]   A CONVERGENCE EXPONENT FOR MULTIDIMENSIONAL CONTINUED-FRACTION ALGORITHMS [J].
BALDWIN, PR .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1507-1526
[5]  
Borel A., 1969, INTRO GROUPES ARITHM
[6]  
BOUGEROL P, 1985, PROGR PROBABILTY STA, V8
[7]   Multidimensional continued fraction and stable laws [J].
Broise, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (01) :97-139
[8]  
BROISE A, 1994, THESIS U RENNES I
[9]  
CASSELS JWS, 1957, INTRO DIOPHANTIE APP
[10]   HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS [J].
CONZE, JP ;
RAUGI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :273-310