Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects

被引:64
作者
Crujeiras, A. B.
Diaz-Lagares, A.
Moreno-Navarrete, J. M.
Sandoval, J.
Hervas, D.
Gomez, A.
Ricart, W.
Casanueva, F. F.
Esteller, M.
Fernandez-Real, J. M.
机构
[1] Bellvitge Biomed Res Inst IDIBELL, Canc Epigenet & Biol Program PEBC, Lhospitalet De Llobregat, Catalonia, Spain
[2] Complejo Hosp Univ Santiago, Lab Mol & Cellular Endocrinol, Inst Invest Sanitaria IDIS, Santiago De Compostela, Spain
[3] Univ Santiago de Compostela, Santiago De Compostela, Spain
[4] CIBER Fisiopatol Obesidad & Nutr CIBERobn, Madrid, Spain
[5] Inst Invest Biomed Girona IdIBGi, Dept Diabet Endocrinol & Nutr, Madrid, Spain
[6] Med Res Inst La Fe, Epigen Unit, Lab Personalized Med, Valencia, Spain
[7] Med Res Inst La Fe, Biostat Unit, Valencia, Spain
[8] Inst Catalana Recerca & Estudis Avancats, Passeig Lluis Co 23, Barcelona, Catalonia, Spain
基金
欧洲研究理事会;
关键词
EPIGENETIC SIGNATURE; FAT; METABOLISM; EXPRESSION; GENES; MUSCLE; CELLS;
D O I
10.1016/j.trsl.2016.07.002
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Elucidating the potential mechanisms involved in the detrimental effect of excess body weight on insulin action is an important priority in counteracting obesity associated diseases. The present study aimed to disentangle the epigenetic basis of insulin resistance by performing a genome-wide epigenetic analysis in visceral adipose tissue (VAT) from morbidly obese patients depending on the insulin sensitivity evaluated by the clamp technique. The global human methylome screening performed in VAT from 7 insulin-resistant (IR) and 5 insulin-sensitive (IS) morbidly obese patients (discovery cohort) analyzed using the Infinium Human Methylation450 BeadChip array identified 982 CpG sites able to perfectly separate the IR and IS samples. The identified sites represented 538 unique genes, 10% of which were diabetes-associated genes. The current work identified novel IR-related genes epigenetically regulated in VAT, such as COL9AI, COL11A2, CD44, MUC4, ADAM2, IGF2BP1, GATA4, TETI, ZNF714, ADCY9, TBX5, and HDACM. The gene with the largest methylation fold-change and mapped by 5 differentially methylated CpG sites located in island/shore and promoter region was ZNF714. This gene presented lower methylation levels in IR than in IS patients in association with increased transcription levels, as further reflected in a validation cohort (n = 24; 11 IR and 13 IS). This study reveals, for the first time, a potential epigenetic regulation involved in the dysregulation of VAT that could predispose patients to insulin resistance and future type 2 diabetes in morbid obesity, providing a potential therapeutic target and biomarkers for counteracting this process.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 40 条
[1]   Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms [J].
Arcidiacono, Biagio ;
Iiritano, Stefania ;
Nocera, Aurora ;
Possidente, Katiuscia ;
Nevolo, Maria T. ;
Ventura, Valeria ;
Foti, Daniela ;
Chiefari, Eusebio ;
Brunetti, Antonio .
EXPERIMENTAL DIABETES RESEARCH, 2012,
[2]   The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women [J].
Arner, Peter ;
Sinha, Indranil ;
Thorell, Anders ;
Ryden, Mikael ;
Dahlman-Wright, Karin ;
Dahlman, Ingrid .
CLINICAL EPIGENETICS, 2015, 7
[3]   An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss [J].
Benton, Miles C. ;
Johnstone, Alice ;
Eccles, David ;
Harmon, Brennan ;
Hayes, Mark T. ;
Lea, Rod A. ;
Griffiths, Lyn ;
Hoffman, Eric P. ;
Stubbs, Richard S. ;
Macartney-Coxson, Donia .
GENOME BIOLOGY, 2015, 16
[4]   ASSESSMENT OF INSULIN SENSITIVITY INVIVO [J].
BERGMAN, RN ;
FINEGOOD, DT ;
ADER, M .
ENDOCRINE REVIEWS, 1985, 6 (01) :45-86
[5]   TOTAL-BODY FAT-CONTENT AND FAT TOPOGRAPHY ARE ASSOCIATED DIFFERENTLY WITH INVIVO GLUCOSE-METABOLISM IN NONOBESE AND OBESE NONDIABETIC WOMEN [J].
BONORA, E ;
DELPRATO, S ;
BONADONNA, RC ;
GULLI, G ;
SOLINI, A ;
SHANK, ML ;
GHIATAS, AA ;
LANCASTER, JL ;
KILCOYNE, RF ;
ALYASSIN, AM ;
DEFRONZO, RA .
DIABETES, 1992, 41 (09) :1151-1159
[6]   Prevalence, Metabolic Features, and Prognosis of Metabolically Healthy Obese Italian Individuals The Cremona Study [J].
Calori, Giliola ;
Lattuada, Guido ;
Piemonti, Lorenzo ;
Garancini, Maria Paola ;
Ragogna, Francesca ;
Villa, Marco ;
Mannino, Salvatore ;
Crosignani, Paolo ;
Bosi, Emanuele ;
Luzi, Livio ;
Ruotolo, Giacomo ;
Perseghin, Gianluca .
DIABETES CARE, 2011, 34 (01) :210-215
[7]  
Crujeiras A.B., 2015, EPIGENETIC BIOMARKER, P313, DOI DOI 10.1016/B978-0-12-801899-6.00016-4
[8]   The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes [J].
Dahlman, I. ;
Sinha, I. ;
Gao, H. ;
Brodin, D. ;
Thorell, A. ;
Ryden, M. ;
Andersson, D. P. ;
Henriksson, J. ;
Perfilyev, A. ;
Ling, C. ;
Dahlman-Wright, K. ;
Arner, P. .
INTERNATIONAL JOURNAL OF OBESITY, 2015, 39 (06) :910-919
[9]   Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion [J].
Dayeh, Tasnim ;
Volkov, Petr ;
Salo, Sofia ;
Hall, Elin ;
Nilsson, Emma ;
Olsson, Anders H. ;
Kirkpatrick, Clare L. ;
Wollheim, Claes B. ;
Eliasson, Lena ;
Ronn, Tina ;
Bacos, Karl ;
Ling, Charlotte .
PLOS GENETICS, 2014, 10 (03)
[10]   'Metabolically healthy obesity': Origins and implications [J].
Denis, Gerald V. ;
Obin, Martin S. .
MOLECULAR ASPECTS OF MEDICINE, 2013, 34 (01) :59-70