Smooth sigmoid wavelet shrinkage for non-parametric estimation

被引:21
作者
Atto, Abdourrahmane M. [1 ]
Pastor, Dominique [1 ]
Mercier, Gregoire [1 ]
机构
[1] Technopole Brest Iroise, TELECOM Bretagne, Inst TELECOM, TAMCIC,CNRS,UMR 2872, F-29238 Brest, France
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
estimation; wavelet transforms; Gaussian noise; image enhancement; image restoration;
D O I
10.1109/ICASSP.2008.4518347
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a new sigmoid-based WaveShrink function. The shrinkage obtained via this function is particularly suitable to reduce noise without impacting significantly the statistical properties of the signal to be recovered. The proposed WaveShrink function depends on a parameter that makes it possible to control the attenuation degree imposed to the data, and thus, allows for a flexible shrinkage.
引用
收藏
页码:3265 / 3268
页数:4
相关论文
共 5 条
[1]   Regularization of wavelet approximations - Rejoinder [J].
Antoniadis, A ;
Fan, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :964-967
[2]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[3]  
GAO HY, 1998, J COMPUTATIONAL GRAP, V7
[4]   A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding [J].
Luisier, Florian ;
Blu, Thierry ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (03) :593-606
[5]   Image denoising using scale mixtures of Gaussians in the wavelet domain [J].
Portilla, J ;
Strela, V ;
Wainwright, MJ ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (11) :1338-1351