Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling

被引:38
作者
Zhao, Hong-Quan [1 ]
Mao, Xin [2 ]
Zhou, Dahua [1 ]
Feng, Shuanglong [1 ]
Shi, Xuan [1 ]
Ma, Yong [1 ]
Wei, Xingzhan [1 ]
Mao, Yuliang [2 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Beijing, Peoples R China
[2] Xiangtan Univ, Sch Phys & Optoelect Engn, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-LAYER; LARGE-AREA; ELASTIC STRAIN; LIGHT-EMISSION; PHOTOLUMINESCENCE; EXPANSION; BILAYER; GROWTH; GAP;
D O I
10.1039/c6nr05638e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We developed a non-mechanical straining method to simultaneously modulate the bandgap and photoluminescence (PL) quantum efficiency of a synthesized molybdenum disulfide (MoS2) monolayer on SiO2, by vacuum annealing and subsequent quick cooling in ethanol. Influences of the thermal treatments at different temperatures from 100 degrees C to 600 degrees C on the PL and Raman spectra of the MoS2 monolayers are reported. A maximum PL peak intensity, twice that of the untreated counterparts under the same measurement conditions, was observed at the treating temperature of 200 degrees C. At the same time, approximately permanent tensile strains were induced, due to the quick cooling from high temperatures, which led to a red-shift of the direct optical bandgap. Modulation of the bandgap was achieved by changing the treating temperatures; nearly linear PL and Raman frequency shifts of similar to 3.82 meV per 100 degrees C and similar to-0.28 cm(-1)/100 degrees C for A exciton photoluminescence and Raman E-2g(1) mode frequency were observed, respectively. The proposed thermal modulation promises a wide range of applications in functional 2D nanodevices and semiconductors. To our knowledge, our findings constitute the first demonstration of thermal engineering by combinational manipulation of annealing and quick cooling of the 2D transitionmetal dichalcogenides.
引用
收藏
页码:18995 / 19003
页数:9
相关论文
共 49 条
[21]   From Bulk to Monolayer MoS2: Evolution of Raman Scattering [J].
Li, Hong ;
Zhang, Qing ;
Yap, Chin Chong Ray ;
Tay, Beng Kang ;
Edwin, Teo Hang Tong ;
Olivier, Aurelien ;
Baillargeat, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (07) :1385-1390
[22]   Ideal strength and phonon instability in single-layer MoS2 [J].
Li, Tianshu .
PHYSICAL REVIEW B, 2012, 85 (23)
[23]   Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles [J].
Li, Wu ;
Carrete, J. ;
Mingo, Natalio .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[24]   Tuning the Excitonic States in MoS2/Graphene van der Waals Heterostructures via Electrochemical Gating [J].
Li, Yang ;
Xu, Cheng-Yan ;
Qin, Jing-Kai ;
Feng, Wei ;
Wang, Jia-Ying ;
Zhang, Siqi ;
Ma, Lai-Peng ;
Cao, Jian ;
Hu, Ping An ;
Ren, Wencai ;
Zhen, Liang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (02) :293-302
[25]   Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte [J].
Lin, Ming-Wei ;
Liu, Lezhang ;
Lan, Qing ;
Tan, Xuebin ;
Dhindsa, Kulwinder S. ;
Zeng, Peng ;
Naik, Vaman M. ;
Cheng, Mark Ming-Cheng ;
Zhou, Zhixian .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (34)
[26]   Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates [J].
Liu, Keng-Ku ;
Zhang, Wenjing ;
Lee, Yi-Hsien ;
Lin, Yu-Chuan ;
Chang, Mu-Tung ;
Su, ChingYuan ;
Chang, Chia-Seng ;
Li, Hai ;
Shi, Yumeng ;
Zhang, Hua ;
Lai, Chao-Sung ;
Li, Lain-Jong .
NANO LETTERS, 2012, 12 (03) :1538-1544
[27]   MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field [J].
Lu, Ning ;
Guo, Hongyan ;
Li, Lei ;
Dai, Jun ;
Wang, Lu ;
Mei, Wai-Ning ;
Wu, Xiaojun ;
Zeng, Xiao Cheng .
NANOSCALE, 2014, 6 (05) :2879-2886
[28]   Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes [J].
Lu, Peng ;
Wu, Xiaojun ;
Guo, Wanlin ;
Zeng, Xiao Cheng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (37) :13035-13040
[29]  
Mak KF, 2013, NAT MATER, V12, P207, DOI [10.1038/nmat3505, 10.1038/NMAT3505]
[30]   Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation [J].
Mohiuddin, T. M. G. ;
Lombardo, A. ;
Nair, R. R. ;
Bonetti, A. ;
Savini, G. ;
Jalil, R. ;
Bonini, N. ;
Basko, D. M. ;
Galiotis, C. ;
Marzari, N. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 79 (20)