An eigenvalue Dirichlet problem with weight and L1 data

被引:0
作者
Bocea, M [1 ]
Radulescu, V [1 ]
机构
[1] Univ Craiova, Dept Math, RO-1100 Craiova, Romania
关键词
L-1; data; solution by approximation; Stampacchia's duality method; renormalized problem;
D O I
10.1002/mana.19991980102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an existence result for a linear eigenvalue problem with weight and data in L-1. Our approach is not variational and uses the notion of solution obtained by approximation. We also prove that this solution coincides with that obtained by G. STAMPACCHIA With duality arguments and we give a link with the renormalized solution in the sense formulated by P.-L. LIONS and F. MURAT.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 36 条
[21]   Higher differentiability for the solutions of nonlinear elliptic systems with lower-order terms and L1,θ-data [J].
G. R. Cirmi ;
S. Leonardi .
Annali di Matematica Pura ed Applicata, 2014, 193 :115-131
[22]   Epiconvergence inetliod to a nonlinear value boundary problem with L-1 Data [J].
Messaho, Jamal .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02) :35-41
[23]   Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L1 terms [J].
Balducci, Francesco ;
Oliva, Francescantonio ;
Petitta, Francesco .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 391 :334-369
[24]   The obstacle problem for nonlinear noncoercive elliptic equations with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{1}$\end{document}-data [J].
Jun Zheng ;
Leandro S. Tavares .
Boundary Value Problems, 2019 (1)
[26]   Existence of renormalized solutions to a nonlinear parabolic equation in L1 setting with nonstandard growth condition and gradient term [J].
Li, Zhongqing ;
Gao, Wenjie .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (14) :3043-3062
[27]   Existence and comparison results for an elliptic equation involving the 1-Laplacian and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-data [J].
Marta Latorre ;
Sergio Segura de León .
Journal of Evolution Equations, 2018, 18 (1) :1-28
[28]   On 1-Laplacian elliptic problems involving a singular term and an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-data [J].
Youssef El Hadfi ;
Mohamed El Hichami .
Journal of Elliptic and Parabolic Equations, 2023, 9 (1) :501-533
[29]   On nonlinear elliptic equations with Hardy potential and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-data [J].
Ahmed Youssfi ;
Elhoussine Azroul ;
Hassan Hjiaj .
Monatshefte für Mathematik, 2014, 173 (1) :107-129
[30]   Addressing the Missing Instructional Data Problem: Using a Teacher Log to Document Tier 1 Instruction [J].
Kurz, Alexander ;
Elliott, Stephen N. ;
Roach, Andrew T. .
REMEDIAL AND SPECIAL EDUCATION, 2015, 36 (06) :361-373