A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries

被引:61
作者
Mu, Tiansheng [1 ]
Zuo, Pengjian [1 ]
Lou, Shuaifeng [1 ]
Pan, Qingrui [1 ]
Zhang, Han [1 ]
Du, Chunyu [1 ]
Gao, Yunzhi [1 ]
Cheng, Xinqun [1 ]
Ma, Yulin [1 ]
Huo, Hua [1 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
关键词
3D carbon skeleton; Silicon anode; Graphitization; Nitrogen doping; Lithium ion battery; METAL-ORGANIC FRAMEWORKS; SI NANOPARTICLES; SILICON; SURFACE; SHELL; NANOCOMPOSITES; NANOSHEETS; REDUCTION; NANOTUBE; NANOROD;
D O I
10.1016/j.jallcom.2018.10.177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The three-dimensional conductive skeleton plays an important role for silicon-based anode materials to achieve good electrochemical performance in lithium ion batteries with high energy density. Here, we prepared a three-dimensional silicon/N-doped graphitized carbon composite (3D Si/NGC) from ZIF-67 precursor by magnesiothermic reduction reaction. The N-doped and graphitized conductive carbon acts as a robust three-dimensional configuration for the silicon nanoparticles, not only improving the conductivity of electrode, but also buffering the volume expansion of silicon nanoparticles. The 3D Si/NGC electrode exhibits good long-term cycle stability and impressive rate performance, delivering reversible capacity of 900 mA h g(-1) at 0.2 A g(-1) after 300 cycles with a capacity retention of 85.5% and a high discharge capacity of 880 mA h g(-1) at 1 A g(-1). The 3D Si/NGC with good electrochemical performance shows great potential as the next generation anode material for lithium ion batteries. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 45 条
[11]   A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries [J].
Jiang, Yu ;
Zhang, Yan ;
Yan, Xuemin ;
Tian, Minglei ;
Xiao, Wei ;
Tang, Haolin .
CHEMICAL ENGINEERING JOURNAL, 2017, 330 :1052-1059
[12]   A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries [J].
Jung, Chul-Ho ;
Choi, Jonghyun ;
Kim, Won-Sik ;
Hong, Seong-Hyeon .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :8013-8020
[13]   Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes [J].
Kim, Namhyung ;
Chae, Sujong ;
Ma, Jiyoung ;
Ko, Minseong ;
Cho, Jaephil .
NATURE COMMUNICATIONS, 2017, 8
[14]   Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery [J].
Kim, Won-Sik ;
Choi, Jonghyun ;
Hong, Seong-Hyeon .
NANO RESEARCH, 2016, 9 (07) :2174-2181
[15]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79
[16]   From Commercial Sponge Toward 3D Graphene-Silicon Networks for Superior Lithium Storage [J].
Li, Bin ;
Yang, Shubin ;
Li, Songmei ;
Wang, Bo ;
Liu, Jianhua .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[17]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[18]   Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes [J].
Lotfabad, Elmira Memarzadeh ;
Kalisvaart, Peter ;
Kohandehghan, Alireza ;
Cui, Kai ;
Kupsta, Martin ;
Farbod, Behdokht ;
Mitlin, David .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2504-2516
[19]   Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability [J].
Lou, Shuaifeng ;
Cheng, Xinqun ;
Zhao, Yang ;
Lushington, Andrew ;
Gao, Jinlong ;
Li, Qin ;
Zuo, Pengjian ;
Wang, Biqiong ;
Gao, Yunzhi ;
Ma, Yulin ;
Du, Chunyu ;
Yin, Geping ;
Sun, Xueliang .
NANO ENERGY, 2017, 34 :15-25
[20]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]