A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries

被引:61
作者
Mu, Tiansheng [1 ]
Zuo, Pengjian [1 ]
Lou, Shuaifeng [1 ]
Pan, Qingrui [1 ]
Zhang, Han [1 ]
Du, Chunyu [1 ]
Gao, Yunzhi [1 ]
Cheng, Xinqun [1 ]
Ma, Yulin [1 ]
Huo, Hua [1 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
关键词
3D carbon skeleton; Silicon anode; Graphitization; Nitrogen doping; Lithium ion battery; METAL-ORGANIC FRAMEWORKS; SI NANOPARTICLES; SILICON; SURFACE; SHELL; NANOCOMPOSITES; NANOSHEETS; REDUCTION; NANOTUBE; NANOROD;
D O I
10.1016/j.jallcom.2018.10.177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The three-dimensional conductive skeleton plays an important role for silicon-based anode materials to achieve good electrochemical performance in lithium ion batteries with high energy density. Here, we prepared a three-dimensional silicon/N-doped graphitized carbon composite (3D Si/NGC) from ZIF-67 precursor by magnesiothermic reduction reaction. The N-doped and graphitized conductive carbon acts as a robust three-dimensional configuration for the silicon nanoparticles, not only improving the conductivity of electrode, but also buffering the volume expansion of silicon nanoparticles. The 3D Si/NGC electrode exhibits good long-term cycle stability and impressive rate performance, delivering reversible capacity of 900 mA h g(-1) at 0.2 A g(-1) after 300 cycles with a capacity retention of 85.5% and a high discharge capacity of 880 mA h g(-1) at 1 A g(-1). The 3D Si/NGC with good electrochemical performance shows great potential as the next generation anode material for lithium ion batteries. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 2017, ADV MAT
[2]   Silicon-carbon composites for lithium-ion batteries: A comparative study of different carbon deposition approaches [J].
Barragan, Alejandro Alvarez ;
Nava, Giorgio ;
Wagner, Nicole J. ;
Mangolini, Lorenzo .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (01)
[3]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[4]   Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance [J].
Chen, Shuangqiang ;
Bao, Peite ;
Huang, Xiaodan ;
Sun, Bing ;
Wang, Guoxiu .
NANO RESEARCH, 2014, 7 (01) :85-94
[5]   Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries [J].
Chen, Yu ;
Liu, Lifeng ;
Xiong, Jie ;
Yang, Tingzhou ;
Qin, Yong ;
Yan, Chenglin .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) :6701-6709
[6]   Novel strategy to improve the Li-storage performance of micro silicon anodes [J].
Choi, Min-Jae ;
Xiao, Ying ;
Hwang, Jang-Yeon ;
Belharouak, Ilias ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2017, 348 :302-310
[7]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[8]   In Situ Growth of MOFs on the Surface of Si Nanoparticles for Highly Efficient Lithium Storage: Si@MOF Nanocomposites as Anode Materials for Lithium-Ion Batteries [J].
Han, Yuzhen ;
Qi, Pengfei ;
Feng, Xiao ;
Li, Siwu ;
Fu, Xiaotao ;
Li, Haiwei ;
Chen, Yifa ;
Zhou, Junwen ;
Li, Xingguo ;
Wang, Bo .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (04) :2178-2182
[9]   Silicon-conductive nanopaper for Li-ion batteries [J].
Hu, Liangbing ;
Liu, Nian ;
Eskilsson, Martin ;
Zheng, Guangyuan ;
McDonough, James ;
Wagberg, Lars ;
Cui, Yi .
NANO ENERGY, 2013, 2 (01) :138-145
[10]   Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries [J].
Ji, Dehui ;
Wan, Yizao ;
Yang, Zhiwei ;
Li, Chunzhi ;
Xiong, Guangyao ;
Li, Lili ;
Han, Ming ;
Guo, Ruisong ;
Luo, Honglin .
ELECTROCHIMICA ACTA, 2016, 192 :22-29