Note on the weak-strong uniqueness criterion for the β-QG in Morrey-Campanato space

被引:4
作者
Gala, Saddek [1 ]
Ragusa, Maria Alessandra [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Catania, Dipartimento Math & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
关键词
Quasi-geostrophic equation; Weak-strong uniqueness criterion; Morrey-Campanato space; QUASI-GEOSTROPHIC EQUATION; GLOBAL WELL-POSEDNESS; REGULARITY CRITERION; MHD SYSTEM; BEHAVIOR; FLOWS;
D O I
10.1016/j.amc.2016.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the beta-quasi-geostrophic equations with the initial data theta(0) epsilon L-2(R-2). Let theta and (theta) over tilde be two weak solutions with the same initial value theta(0). If theta satisfies the energy inequality and if del(theta) epsilon L(r)0, T; (M) over dot(p,q) (R-2) with 2/p + alpha/r = alpha + beta - 1 and 2/alpha + beta - 1 < p< 3/r, where (M) over dot(p,g)(R-2) denotes the homogeneous Morrey-Campanato space, then we have theta = (theta) over tilde. Due to the embedding relation L-p( R-2) subset of (M) over dot(p,q) with 1 < p < q < infinity, we see that our result is an improvement of the corresponding result given by Zhao and Liu (2013). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 28 条
[1]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[2]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[3]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[4]  
Constantin P., 2011, INDIANA U MATH J, V57, P97
[5]   Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
NONLINEARITY, 2006, 19 (12) :2919-2928
[6]   On the weak-strong uniqueness of the dissipative surface quasi-geostrophic equation [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
NONLINEARITY, 2012, 25 (05) :1513-1524
[7]   Global cauchy problem of 2D generalized MHD equations [J].
Fan, Jishan ;
Malaikah, Honaida ;
Monaquel, Satha ;
Nakamura, Gen ;
Zhou, Yong .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :127-131
[8]   REMARK ON A REGULARITY CRITERION IN TERMS OF PRESSURE FOR THE NAVIER-STOKES EQUATIONS [J].
Gala, Sadek .
QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (01) :147-155
[9]   Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space [J].
Gala, Sadek .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (02) :181-194
[10]  
GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order