Constraints on the numerical age of the Paleocene-Eocene boundary

被引:118
作者
Charles, Adam J. [1 ]
Condon, Daniel J. [2 ]
Harding, Ian C. [1 ]
Paelike, Heiko [1 ]
Marshall, John E. A. [1 ]
Cui, Ying [3 ]
Kump, Lee [3 ]
Croudace, Ian W. [1 ]
机构
[1] Univ Southampton, Sch Ocean & Earth Sci, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England
[2] British Geol Survey, NERC, Isotope Geosci Lab, Keyworth NG12 5GG, Notts, England
[3] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
关键词
Paleocene; Eocene; PETM; cyclostratigraphy; radioisotopic dating; Spitsbergen; OCEANIC METHANE HYDRATE; THERMAL MAXIMUM; TIME-SCALE; DEEP-SEA; U-PB; CLIMATE; SPITSBERGEN; BASIN; END; HYPERTHERMALS;
D O I
10.1029/2010GC003426
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Here we present combined radioisotopic dating (U-Pb zircon) and cyclostratigraphic analysis of the carbon isotope excursion at the Paleocene-Eocene (P-E) boundary in Spitsbergen to determine the numerical age of the boundary. Incorporating the total uncertainty from both radioisotopic and cyclostratigraphic data sets gives an age ranging from 55.728 to 55.964 Ma, within error of a recently proposed astronomical age of similar to 55.93 Ma. Combined with the assumption that the Paleocene Epoch spans twenty-five 405 kyr cycles, our new age for the boundary suggests an age of similar to 66 Ma for the Cretaceous-Paleogene boundary. Furthermore, our P-E boundary age is consistent with the hypothesis that the onset of the Paleocene-Eocene thermal maximum at the boundary occurred on the falling limb of a 405 kyr cycle, suggesting the event was initiated by a different mechanism to that which triggered the other early Eocene hyperthermals.
引用
收藏
页数:19
相关论文
共 88 条
[1]   An early Eocene carbon cycle perturbation at ∼52.5 Ma in the Southern Alps: Chronology and biotic response [J].
Agnini, Claudia ;
Macri, Patrizia ;
Backman, Jan ;
Brinkhuis, Henk ;
Fornaciari, Eliana ;
Giusberti, Luca ;
Luciani, Valeria ;
Rio, Domenico ;
Sluijs, Appy ;
Speranza, Fabio .
PALEOCEANOGRAPHY, 2009, 24
[2]  
[Anonymous], 2002, BATLAS - Mid Norway Plate Reconstructions Atlas with Global and Atlantic Perspectives, P48
[3]   Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming [J].
Aziz, Hayfaa Abdul ;
Hilgen, Frits J. ;
van Luijk, Gerson M. ;
Sluijs, Appy ;
Kraus, Mary J. ;
Pares, Josep M. ;
Gingerich, Philip D. .
GEOLOGY, 2008, 36 (07) :531-534
[4]   Cyclostratigraphic reasoning and orbital time calibration [J].
Bailey, Robin John .
TERRA NOVA, 2009, 21 (05) :340-351
[5]   Mechanisms of climate warming at the end of the Paleocene [J].
Bains, S ;
Corfield, RM ;
Norris, RD .
SCIENCE, 1999, 285 (5428) :724-727
[6]   Early Palaeogene temperature evolution of the southwest Pacific Ocean [J].
Bijl, Peter K. ;
Schouten, Stefan ;
Sluijs, Appy ;
Reichart, Gert-Jan ;
Zachos, James C. ;
Brinkhuis, Henk .
NATURE, 2009, 461 (7265) :776-779
[7]   Tectonically versus climatically driven Cenozoic exhumation of the Eurasian plate margin, Svalbard: Fission track analyses [J].
Blythe, AE ;
Kleinspehn, KL .
TECTONICS, 1998, 17 (04) :621-639
[8]   High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture [J].
Bruhn, R ;
Steel, R .
JOURNAL OF SEDIMENTARY RESEARCH, 2003, 73 (05) :745-755
[9]   Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron [J].
Channell, J. E. T. ;
Hodell, D. A. ;
Singer, B. S. ;
Xuan, C. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2010, 11
[10]  
CONDON D, 2007, EOS T AGU S, V88