Molten-Salt-Assisted Chemical Vapor Deposition Process for Substitutional Doping of Monolayer MoS2 and Effectively Altering the Electronic Structure and Phononic Properties

被引:51
|
作者
Li, Wei [1 ,2 ]
Huang, Jianqi [5 ]
Han, Bo [3 ,4 ]
Xie, Chunyu [1 ]
Huang, Xiaoxiao [1 ,2 ]
Tian, Kesong [1 ,2 ]
Zeng, Yi [1 ,2 ]
Zhao, Zijing [1 ,2 ]
Gao, Peng [3 ,4 ,6 ]
Zhang, Yanfeng [1 ]
Yang, Teng [5 ]
Zhang, Zhidong [5 ]
Sun, Shengnan [1 ,2 ]
Hou, Yanglong [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[2] Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Beijing Key Lab Magnetoelect Mat & Devices BKL MM, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[4] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[5] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
2D; molten-salt-assisted chemical vapor deposition; molybdenum disulfide; substitutional doping; EDGE SITES; METAL; NANOSHEETS; GROWTH;
D O I
10.1002/advs.202001080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Substitutional doping of layered transition metal dichalcogenides (TMDs) has been proved to be an effective route to alter their intrinsic properties and achieve tunable bandgap, electrical conductivity and magnetism, thus greatly broadening their applications. However, achieving valid substitutional doping of TMDs remains a great challenge to date. Herein, a distinctive molten-salt-assisted chemical vapor deposition (MACVD) method is developed to match the volatilization of the dopants perfectly with the growth process of monolayer MoS2, realizing the substitutional doping of transition metal Fe, Co, and Mn. This doping strategy effectively alters the electronic structure and phononic properties of the pristine MoS2. In addition, a temperature-dependent Raman spectrum is employed to explore the effect of dopants on the lattice dynamics and first-order temperature coefficient of monolayer MoS2, and this doping effect is illustrated in depth combined with the theoretical calculation. This work provides an intriguing and powerful doping strategy for TMDs through employing molten salt in the CVD system, paving the way for exploring new properties of 2D TMDs and extending their applications into spintronics, catalytic chemistry and photoelectric devices.
引用
收藏
页数:9
相关论文
共 11 条
  • [1] Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals
    Ma, Dongwei
    Ju, Weiwei
    Li, Tingxian
    Zhang, Xiwei
    He, Chaozheng
    Ma, Benyuan
    Tang, Yanan
    Lu, Zhansheng
    Yang, Zongxian
    APPLIED SURFACE SCIENCE, 2016, 364 : 181 - 189
  • [2] Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping
    Zhang, Kehao
    Bersch, Brian M.
    Joshi, Jaydeep
    Addou, Rafik
    Cormier, Christopher R.
    Zhang, Chenxi
    Xu, Ke
    Briggs, Natalie C.
    Wang, Ke
    Subramanian, Shruti
    Cho, Kyeongjae
    Fullerton-Shirey, Susan
    Wallace, Robert M.
    Vora, Patrick M.
    Robinson, Joshua A.
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (16)
  • [3] P-type Doping in Large-Area Monolayer MoS2 by Chemical Vapor Deposition
    Li, Mengge
    Yao, Jiadong
    Wu, Xiaoxiang
    Zhang, Shucheng
    Xing, Boran
    Niu, Xinyue
    Yan, Xiaoyuan
    Yu, Ying
    Liu, Yali
    Wang, Yewu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 6276 - 6282
  • [4] Investigation of the Growth Process of Continuous Monolayer MoS2 Films Prepared by Chemical Vapor Deposition
    Wang, Wenzhao
    Chen, Xiaoxiao
    Zeng, Xiangbin
    Wu, Shaoxiong
    Zeng, Yang
    Hu, Yishuo
    Xu, Sue
    Zhou, Guangtong
    Cui, Hongxing
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (09) : 5509 - 5517
  • [5] Investigation of the Growth Process of Continuous Monolayer MoS2 Films Prepared by Chemical Vapor Deposition
    Wenzhao Wang
    Xiaoxiao Chen
    Xiangbin Zeng
    Shaoxiong Wu
    Yang Zeng
    Yishuo Hu
    Sue Xu
    Guangtong Zhou
    Hongxing Cui
    Journal of Electronic Materials, 2018, 47 : 5509 - 5517
  • [6] Transport properties of the top and bottom surfaces in monolayer MoS2 grown by chemical vapor deposition
    Kurabayashia, S.
    Nagashio, K.
    NANOSCALE, 2017, 9 (35) : 13264 - 13271
  • [7] Controllable p-type doping of monolayer MoS2 with tantalum by one-step chemical vapor deposition
    Li, Mengge
    Wu, Xiaoxiang
    Guo, Wenxuan
    Liu, Yali
    Xiao, Cong
    Ou, Tianjian
    Zheng, Yuan
    Wang, Yewu
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (19) : 7662 - 7673
  • [8] Tuning Excitonic Properties of Monolayer MoS2 with Microsphere Cavity by High-Throughput Chemical Vapor Deposition Method
    Mi, Yang
    Zhang, Zhepeng
    Zhao, Liyun
    Zhang, Shuai
    Chen, Jie
    Ji, Qingqing
    Shi, Jianping
    Zhou, Xiebo
    Wang, Rui
    Shi, Jia
    Du, Wenna
    Wu, Zhiyong
    Qiu, Xiaohui
    Zhang, Qing
    Zhang, Yanfeng
    Liu, Xinfeng
    SMALL, 2017, 13 (42)
  • [9] A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2
    Bae, Jeonghwan
    Yoo, Youngdong
    NANOMATERIALS, 2021, 11 (09)
  • [10] Catalyst-Free Growth of MoS2 Nanorods Synthesized by Dual Pulsed Laser-Assisted Chemical Vapor Deposition and Their Structural, Optical and Electrical Properties
    Panchu, Sarojini Jeeva
    Adebisi, Mufutau A.
    Manikandan, E.
    Moodley, Mathew K.
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (03) : 1957 - 1968