An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans

被引:90
作者
Faumont, Serge [1 ]
Rondeau, Gary [2 ]
Thiele, Tod R. [3 ]
Lawton, Kristy J. [4 ]
McCormick, Kathryn E.
Sottile, Matthew [5 ]
Griesbeck, Oliver [6 ]
Heckscher, Ellie S. [1 ]
Roberts, William M.
Doe, Chris Q. [1 ]
Lockery, Shawn R.
机构
[1] Univ Oregon, Inst Neurosci, Howard Hughes Med Inst, Inst Mol Biol, Eugene, OR 97403 USA
[2] Appl Sci Instrumentat, Eugene, OR USA
[3] Univ Calif San Francisco, San Francisco, CA 94143 USA
[4] Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA
[5] Galois Inc, Portland, OR USA
[6] Max Planck Inst Neurobiol, Martinsried, Germany
基金
美国国家卫生研究院;
关键词
NEURAL ACTIVITY; IN-VIVO; INDICATORS; LOCOMOTION; BEHAVIOR; CHANNEL; MOTONEURONS; EXPRESSION; DROSOPHILA; RECEPTOR;
D O I
10.1371/journal.pone.0024666
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
BARGMANN CI, 1990, COLD SPRING HARB SYM, V55, P529
[2]   Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans [J].
Ben Arous, Juliette ;
Tanizawa, Yoshinori ;
Rabinowitch, Ithai ;
Chatenay, Didier ;
Schafer, William R. .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 187 (02) :229-234
[3]  
BRENNER S, 1974, GENETICS, V77, P71
[4]   Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans [J].
Chalasani, Sreekanth H. ;
Chronis, Nikos ;
Tsunozaki, Makoto ;
Gray, Jesse M. ;
Ramot, Daniel ;
Goodman, Miriam B. ;
Bargmann, Cornelia I. .
NATURE, 2007, 450 (7166) :63-+
[5]  
CHALFIE M, 1985, J NEUROSCI, V5, P956
[6]   Wiring optimization can relate neuronal structure and function [J].
Chen, BL ;
Hall, DH ;
Chklovskii, DB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (12) :4723-4728
[7]   Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans [J].
Chronis, Nikos ;
Zimmer, Manuel ;
Bargmann, Cornelia I. .
NATURE METHODS, 2007, 4 (09) :727-731
[8]   Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients [J].
Clark, Damon A. ;
Gabel, Christopher V. ;
Gabel, Harrison ;
Samuel, Aravinthan D. T. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (23) :6083-6090
[9]  
CULOTTI JG, 1978, GENETICS, V90, P243
[10]  
Goodman MB, 2005, WORMBOOK, DOI [10.1895/wormbook.1.7.1, DOI 10.1895/W0RMBOOK.1.7.1]