Degradable Rosin-Ester-Caprolactone Graft Copolymers

被引:106
作者
Yao, Kejian [1 ,2 ]
Wang, Jifu [1 ,2 ,5 ]
Zhang, Wujie [3 ,4 ]
Lee, James S. [1 ,2 ]
Wang, Chunpeng [5 ]
Chu, Fuxiang [5 ]
He, Xiaoming [3 ,4 ]
Tang, Chuanbing [1 ,2 ]
机构
[1] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Univ S Carolina, Nanoctr, Columbia, SC 29208 USA
[3] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA
[4] Univ S Carolina, Biomed Engn Program, Columbia, SC 29208 USA
[5] Chinese Acad Forestry, Inst Chem Ind Forestry Prod, Nanjing 210042, Peoples R China
关键词
RING-OPENING POLYMERIZATION; TRANSFER RADICAL POLYMERIZATION; BIODEGRADABLE POLYMERS; RENEWABLE RESOURCES; CLICK CHEMISTRY; BLOCK-COPOLYMERS; ALIPHATIC POLYESTERS; EPSILON-CAPROLACTONE; ACID; POLY(EPSILON-CAPROLACTONE);
D O I
10.1021/bm200460u
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have carried out the synthesis of side-chain rosin-ester-structured poly(e,caprolactone) (PCL) through a combination of ring-opening polymerization and click chemistry. Rosin structures are shown to be effectively incorporated into each repeat unit of caprolactone. This simple and versatile methodology does not require sophisticated purification of raw renewable biomass from nature. The rosin properties have been successfully imparted to the PCL polymers. The bulky hydrophenanthrene group of rosin increases the glass-transition temperature of PCL by > 100 degrees C, whereas the hydrocarbon nature of rosin structures provides PCL excellent hydrophobicity with contact angle very similar to polystyrene and very low water uptake. The rosin containing PCL graft copolymers exhibit full degradability and good biocompatibility. This study illustrates a general strategy to prepare a new class of renewable hydrocarbon-rich degradable biopolymers.
引用
收藏
页码:2171 / 2177
页数:7
相关论文
共 50 条
[1]  
Amass W, 1998, POLYM INT, V47, P89, DOI 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO
[2]  
2-F
[3]   Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel [J].
Atta, Ayman M. ;
Nassar, Ibrahim F. ;
Bedawy, Hamed M. .
REACTIVE & FUNCTIONAL POLYMERS, 2007, 67 (07) :617-626
[4]   A Virtual Issue of Macromolecules: "Polymers from Renewable Resources" [J].
Coates, Geoffrey W. ;
Hillmyer, Marc A. .
MACROMOLECULES, 2009, 42 (21) :7987-7989
[5]   Chemical routes for the transformation of biomass into chemicals [J].
Corma, Avelino ;
Iborra, Sara ;
Velty, Alexandra .
CHEMICAL REVIEWS, 2007, 107 (06) :2411-2502
[6]   Chemicals from biomass [J].
Dodds, David R. ;
Gross, Richard A. .
SCIENCE, 2007, 318 (5854) :1250-1251
[7]   Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials [J].
Gandini, Alessandro .
MACROMOLECULES, 2008, 41 (24) :9491-9504
[8]   Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester [J].
Grijpma, DW ;
Hou, QP ;
Feijen, J .
BIOMATERIALS, 2005, 26 (16) :2795-2802
[9]   Biodegradable polymers for the environment [J].
Gross, RA ;
Kalra, B .
SCIENCE, 2002, 297 (5582) :803-807
[10]   Polymers from triglyceride oils [J].
Guner, F. Seniha ;
Yagci, Yusuf ;
Erciyes, A. Tuncer .
PROGRESS IN POLYMER SCIENCE, 2006, 31 (07) :633-670