Modified extragradient algorithms for solving equilibrium problems

被引:78
作者
Dang Van Hieu [1 ]
Cho, Yeol Je [2 ,3 ,4 ]
Xiao, Yi-bin [4 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju, South Korea
[3] Gyeongsang Natl Univ, RINS, Jinju, South Korea
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Extragradient method; equilibrium problem; pseudomonotone bifunction; Lipschitz-type condition; INERTIAL PROXIMAL METHOD; CONVERGENCE; INEQUALITIES;
D O I
10.1080/02331934.2018.1505886
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce some new algorithms for solving the equilibrium problem in a Hilbert space which are constructed around the proximal-like mapping and inertial effect. Also, some convergence theorems of the algorithms are established under mild conditions. Finally, several experiments are performed to show the computational efficiency and the advantage of the proposed algorithm over other well-known algorithms.
引用
收藏
页码:2003 / 2029
页数:27
相关论文
共 34 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]   On ergodic algorithms for equilibrium problems [J].
Anh, P. N. ;
Hai, T. N. ;
Tuan, P. M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) :179-195
[3]  
[Anonymous], 2002, FINITE DIMENSIONAL V
[4]   The heavy ball with friction method, I. The continuous dynamical system: Global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system [J].
Attouch, H ;
Goudou, X ;
Redont, P .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (01) :1-34
[5]   Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria [J].
Attouch, H ;
Czarnecki, MO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :278-310
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]  
Blum E., 1994, Math. student, V63, P123
[8]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[9]   An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Laszlo, Szilard Csaba .
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) :3-25
[10]   Weak and strong convergence of an inertial proximal method for solving Ky Fan minimax inequalities [J].
Chbani, Zaki ;
Riahi, Hassan .
OPTIMIZATION LETTERS, 2013, 7 (01) :185-206