The Density of Primes in Orbits of zd + c

被引:21
作者
Hamblen, Spencer [1 ,2 ]
Jones, Rafe [3 ]
Madhu, Kalyani [4 ]
机构
[1] McDaniel Coll, Westminster, MD 21157 USA
[2] McDaniel Coll, Westminster, MD 21157 USA
[3] Carleton Coll, Northfield, MN 55057 USA
[4] Univ Rochester, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
DIVISORS;
D O I
10.1093/imrn/rnt349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a polynomial f (z)= z(d) + c is an element of K[z] over a global field K and a(0) is an element of K, we study the density of prime ideals of K dividing at least one element of the orbit of a(0) under f. We show that for many choices of d and c this density is zero for all a(0), assuming K contains a primitive dth root of unity. The proof relies on several new results, including some giving criteria to ensure the number of irreducible factors of the nth iterate of f remains bounded as n grows, and others on the ramification above certain primes in iterated extensions. Together these allow for nearly complete information when K is a global function field or when K = Q(xi(d)).
引用
收藏
页码:1924 / 1958
页数:35
相关论文
共 31 条
[1]  
[Anonymous], 2002, ALGEBRA
[2]  
[Anonymous], 1993, CAMBRIDGE STUDIES AD
[3]  
[Anonymous], 2013, Algebraic Number Theory
[4]  
[Anonymous], 2002, GRAD TEXT M
[5]  
BALLOT C, 1995, MEM AM MATH SOC, V115, P1
[6]   Periods of rational maps modulo primes [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Hutz, Benjamin ;
Kurlberg, Par ;
Scanlon, Thomas ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2013, 355 (02) :637-660
[7]   A case of the dynamical Mordell-Lang conjecture [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Kurlberg, Par ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :1-26
[8]   ON THE CONSTRUCTION OF RELATIVE GENUS FIELDS [J].
CORNELL, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 271 (02) :501-511
[9]   On the irreducibility of the iterates of xn-b [J].
Danielson, L ;
Fein, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) :1589-1596
[10]  
DOERKSEN K., 2012, INTEGERS, V12