Magnetization reversal dependence on effective magnetic anisotropy in electroplated Co-Cu nanowire arrays

被引:41
作者
Garcia, J. [1 ]
Prida, V. M. [1 ]
Vivas, L. G. [2 ]
Hernando, B. [1 ]
Barriga-Castro, E. D. [3 ]
Mendoza-Resendez, R. [4 ]
Luna, C. [3 ]
Escrig, J. [5 ,6 ]
Vazquez, M. [2 ]
机构
[1] Univ Oviedo, Dept Fis, E-33007 Oviedo, Asturias, Spain
[2] CSIC, ICMM, E-28049 Madrid, Spain
[3] UANL, FCFM, CICFiM, San Nicolas De Los Garza 66450, Nuevo Leon, Mexico
[4] UANL, FIME, San Nicolas De Los Garza 66450, Nuevo Leon, Mexico
[5] Univ Santiago Chile USACH, Dept Fis, Santiago, Chile
[6] Ctr Dev Nanosci & Nanotechnol CEDENNA, Santiago, Chile
关键词
GIANT MAGNETORESISTANCE; COBALT NANOWIRES; MULTILAYERED NANOWIRES; ELECTRODEPOSITION; TEMPLATE; ALUMINA;
D O I
10.1039/c4tc02988g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arrays of Co(100-x)Cu(x) (0 <= x <= 27) nanowires with 45 nm of diameter and 18 mu m in length have been potentiostatically electrodeposited into the hexagonally self-assembled nanopores of anodic alumina membranes. The structural characterization of Co-Cu nanowires confirms the coexistence of both hcp and fcc crystalline phases, with textures that are strongly affected by the fractional content of Cu. Parallel magnetic studies of the room temperature magnetization process by First Order Reversal Curve (FORC) analysis and the angular dependence of coercivity confirm the presence of two coexisting ferromagnetic phases on intermediate Cu content nanowires, ascribed to a softer magnetic phase for pure Co and a harder magnetic one for the Co-Cu composition alloy, respectively. The temperature dependence of coercivity and remanence reveal a reorientation of the effective magnetic anisotropy with the addition of Cu to the Co-Cu alloy nanowires, being enhanced by the coexistence of the two ferromagnetic phases.
引用
收藏
页码:4688 / 4697
页数:10
相关论文
共 46 条
  • [21] Angular dependence of magnetic properties in Ni nanowire arrays
    Lavin, R.
    Denardin, J. C.
    Escrig, J.
    Altbir, D.
    Cortes, A.
    Gomez, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)
  • [22] Shape memory effect in Cu nanowires
    Liang, WW
    Zhou, M
    Ke, FJ
    [J]. NANO LETTERS, 2005, 5 (10) : 2039 - 2043
  • [23] Size effects on magnetic properties in Fe0.68Ni0.32 alloy nanowire arrays
    Liu, QF
    Gao, CX
    Xiao, JJ
    Xue, DS
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 260 (1-2) : 151 - 155
  • [24] The pH rule for fabricating composite CoCu nanowire arrays
    Liu, Xiaoxu
    Zhao, Jianling
    Li, Yangxian
    Xu, Shifeng
    Zhu, Zhiyong
    Chen, Jinglan
    Wu, Guangheng
    [J]. CHEMISTRY LETTERS, 2007, 36 (01) : 166 - 167
  • [25] Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires
    Maaz, K.
    Karim, S.
    Usman, M.
    Mumtaz, A.
    Liu, J.
    Duan, J. L.
    Maqbool, M.
    [J]. NANOSCALE RESEARCH LETTERS, 2010, 5 (07): : 1111 - 1117
  • [26] ORDERED METAL NANOHOLE ARRAYS MADE BY A 2-STEP REPLICATION OF HONEYCOMB STRUCTURES OF ANODIC ALUMINA
    MASUDA, H
    FUKUDA, K
    [J]. SCIENCE, 1995, 268 (5216) : 1466 - 1468
  • [27] Mayergoyz I.D., 1991, Mathematical Models of Hysteresis
  • [28] Template Nanowires for Spintronics Applications: Nanomagnet Microwave Resonators Functioning in Zero Applied Magnetic Field
    Mourachkine, A.
    Yazyev, O. V.
    Ducati, C.
    Ansermet, J. -Ph.
    [J]. NANO LETTERS, 2008, 8 (11) : 3683 - 3687
  • [29] Effects of the magnetoelastic anisotropy in Ni nanowire arrays
    Navas, D.
    Pirota, K. R.
    Zelis, P. Mendoza
    Velazquez, D.
    Ross, C. A.
    Vazquez, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
  • [30] Nishizawa T., 1984, B ALLOY PHASE DIAGR, V5, P161, DOI DOI 10.1007/BF02868953