Design of Co Nanoparticles-Encapsulated by Boron and Nitrogen Co-Doped Carbon Nanosheets as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction

被引:10
作者
Niu, Wen-Jun [1 ,2 ]
Sun, Qiao-Qiao [1 ,2 ]
Wang, Ya-Ping [1 ,2 ]
Gu, Bing-Ni [3 ,4 ,5 ]
Liu, Ming-Jin [3 ,4 ,5 ]
He, Jin-Zhong [1 ,2 ]
Chen, Jiang-Lei [1 ,2 ]
Chung, Chia-Chen [3 ,4 ,5 ]
Liu, Wen-Wu [1 ,2 ]
Chueh, Yu-Lun [3 ,4 ,5 ]
机构
[1] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China
[3] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[4] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[5] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan
基金
中国国家自然科学基金;
关键词
carbon nanosheets; disposable Zn-air battery; heteroatom doping; M-N; C; oxygen reduction reaction; DISPERSED METAL-CATALYSTS; ORR; NANOSTRUCTURES; OXIDE;
D O I
10.1002/admi.202101454
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, for the first time, a rationally designed strategy for synthesis of Co nanoparticles encapsulated by boron and nitrogen co-doped carbon nanosheets (CNs), namely B, N-Co/CNs, as highly efficient electrocatalyst for oxygen reduction reaction (ORR) is demonstrated. The generated Co nanoparticles not only create well-defined heterointerfaces with high conductivity to overcome the poor ORR activity but also promote the formation of robust graphitic carbon. The co-existence of boron and nitrogen atoms can increase the highest occupied molecular orbital energy of sp(2) hybridization, activating pi electrons in graphitic CNs, thereby enhancing the activity of the catalyst. The B, N-Co/CNs exhibit a comparable half-wave potential (E-1/2 = 0.83 V) to that of commercial Pt/C catalyst (E-1/2 = 0.85 V) with a larger current density for ORR. Importantly, the homemade disposable Zn-air battery (ZAB) is able to deliver excellent performance, including a peak power density of 93.93 mW cm(-2) and a specific capacity of 727.5 mAh g(-1), outperforming the Pt/C catalyst. The findings highlight a new guideline for constructing B, N-Co/CNs catalyst with a rationally designed structure toward superior property for advanced metal-air cathode materials.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[2]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[3]   Atomically Dispersed Metal Catalysts for Oxygen Reduction [J].
Chen, Mengjie ;
He, Yanghua ;
Spendelow, Jacob S. ;
Wu, Gang .
ACS ENERGY LETTERS, 2019, 4 (07) :1619-1633
[4]   Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction [J].
Chen, Yifan ;
Li, Zhijuan ;
Zhu, Yanbo ;
Sun, Dongmei ;
Liu, Xien ;
Xu, Lin ;
Tang, Yawen .
ADVANCED MATERIALS, 2019, 31 (08)
[5]   Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR [J].
Dinh Chuong Nguyen ;
Thi Luu Luyen Doan ;
Prabhakaran, Sampath ;
Duy Thanh Tran ;
Kim, Do Hwan ;
Lee, Joong Hee ;
Kim, Nam Hoon .
NANO ENERGY, 2021, 82
[6]   Understanding the Selectivity of the Oxygen Reduction Reaction at the Atomistic Level on Nitrogen-Doped Graphitic Carbon Materials [J].
Fernandez-Escamilla, Hector Noe ;
Guerrero-Sanchez, Jonathan ;
Contreras, Enrique ;
Ruiz-Marizcal, Jose Manuel ;
Alonso-Nunez, Gabriel ;
Contreras, Oscar E. ;
Felix-Navarro, Rosa Maria ;
Romo-Herrera, Jose M. ;
Takeuchi, Noboru .
ADVANCED ENERGY MATERIALS, 2021, 11 (03)
[7]   In-situ synthesis of hybrid nickel cobalt sulfide/carbon nitrogen nanosheet composites as highly efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries [J].
He, Jin-Zhong ;
Niu, Wen-Jun ;
Wang, Ya-Ping ;
Sun, Qiao-Qiao ;
Liu, Ming-Jin ;
Wang, Kuangye ;
Liu, Wen-Wu ;
Liu, Mao-Cheng ;
Yu, Fu-Cheng ;
Chueh, Yu-Lun .
ELECTROCHIMICA ACTA, 2020, 362
[8]   The Chemistry and Promising Applications of Graphene and Porous Graphene Materials [J].
Huang, Haibo ;
Shi, Haodong ;
Das, Pratteek ;
Qin, Jieqiong ;
Li, Yaguang ;
Wang, Xiao ;
Su, Feng ;
Wen, Pengchao ;
Li, Suyuan ;
Lu, Pengfei ;
Liu, Fangyan ;
Li, Yuejiao ;
Zhang, Ying ;
Wang, Yi ;
Wu, Zhong-Shuai ;
Cheng, Hui-Ming .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (41)
[9]   Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species [J].
Huang, Xiaoxiao ;
Shen, Tong ;
Zhang, Teng ;
Qiu, Hailong ;
Gu, Xingxing ;
Ali, Zeeshan ;
Hou, Yanglong .
ADVANCED ENERGY MATERIALS, 2020, 10 (11)
[10]   Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction [J].
Kulkarni, Ambarish ;
Siahrostami, Samira ;
Patel, Anjli ;
Norskov, Jens K. .
CHEMICAL REVIEWS, 2018, 118 (05) :2302-2312