A priori estimates for the Euler equation with a free boundary

被引:1
作者
Schweizer, B [1 ]
机构
[1] Univ Heidelberg, Inst Angew Math, D-6900 Heidelberg, Germany
来源
EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS | 2005年
关键词
WATER-WAVE PROBLEM; SURFACE-TENSION; WELL-POSEDNESS; SOBOLEV SPACES; MOTION; FLUID;
D O I
10.1142/9789812702067_0064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a result for an incompressible ideal fluid with a free surface subject to surface tension; it is not assumed that the fluid is irrotational. A priori estimates are shown by combining energy and vorticity estimates. We indicate how these results can be used in order to derive a local existence result with a Navier-Stokes approximation.
引用
收藏
页码:401 / 406
页数:6
相关论文
共 11 条
[1]  
Beyer K, 1998, MATH METHOD APPL SCI, V21, P1149, DOI 10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO
[2]  
2-C
[3]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[4]  
2-H
[6]  
Iguchi T., 1999, Adv. Math. Sci. Appl., V9, P415
[7]   Free boundary problem for an incompressible ideal fluid with surface tension [J].
Ogawa, M ;
Tani, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (12) :1725-1740
[8]  
SCHWEIZER B, IN PRESS 3 DIMENSION
[9]  
Wagner A, 1999, CH CRC RES NOTES, V409, P246
[10]   Well-posedness in Sobolev spaces of the full water wave problem in 3-D [J].
Wu, SJ .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :445-495