Odd dimensional analogue of the Euler characteristic

被引:4
作者
Borsten, L. [1 ,2 ]
Duff, M. J. [3 ,4 ,5 ]
Nagy, S. [6 ]
机构
[1] Heriot Watt Univ, Maxwell Inst, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77840 USA
[4] Texas A&M Univ, Hagler Inst Adv Study, College Stn, TX 77840 USA
[5] Imperial Coll London, Blackett Lab, Theoret Phys, Prince Consort Rd, London SW7 2AZ, England
[6] Queen Mary Univ London, Ctr Theoret Phys, Dept Phys & Astron, 327 Mile End Rd, London E1 4NS, England
基金
英国科学技术设施理事会;
关键词
Anomalies in Field and String Theories; M-Theory; BRST Quantization; CALABI-YAU MANIFOLDS; PARTITION-FUNCTION; D=11 SUPERGRAVITY; ANALYTIC TORSION; R-TORSION; C-THEOREM; FIELD; COMPACTIFICATION; SUPERSYMMETRY; TENSORS;
D O I
10.1007/JHEP12(2021)178
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Kfinneth formula chi(X x Y) = chi(X)chi(Y). In terms of the Betti numbers b(p)(X), chi(X) = Sigma(p) (-1)(p)b(p) (X), implying that chi(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called rho, that obeys an analogous formula rho(X x Y) = chi(X)rho(Y) when Y is odd dimensional. The unique solution is rho(Y) = Sigma(p)(-1)(p)pb(p) (Y). Physical applications include: (1) rho -> (-1)(m)rho under a generalized mirror map in d = 2m+1 dimensions, in analogy with chi -> (-1)(m)chi in d = 2m; (2) rho appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X-4 x Y-7 is given by chi(X-4)rho(Y-7) = rho(X-4 x Y-7) and hence vanishes when Y-7 is self-mirror. Since, in particular, rho(Y x S-1) = chi(Y), this is consistent with the corresponding anomaly for Type IIA on X-4 x Y-6, given by chi(X-4)chi(Y-6) = chi(X-4 x Y-6), which vanishes when Y-6 is self-mirror; (3) In the partition function of p-form gauge fields, p appears in odd dimensions as x does in even.
引用
收藏
页数:38
相关论文
共 69 条
[1]   Dirichlet Joyce manifolds, discrete torsion and duality [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1997, 492 (03) :591-606
[2]  
Aspinwall P.S., 1996, AMS/IP Stud. Adv. Math, V1, P703, DOI DOI 10.1090/AMSIP/001/27
[3]   CONSTRUCTION AND COUPLINGS OF MIRROR MANIFOLDS [J].
ASPINWALL, PS ;
LUTKEN, CA ;
ROSS, GG .
PHYSICS LETTERS B, 1990, 241 (03) :373-380
[4]   N=8 SUPERGRAVITY BREAKS DOWN TO N=1 [J].
AWADA, MA ;
DUFF, MJ ;
POPE, CN .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :294-297
[5]   New formulations of D=10 supersymmetry and D8-O8 domain walls [J].
Bergshoeff, E ;
Kallosh, R ;
Ortín, T ;
Roest, D ;
Van Proeyen, A .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (17) :3359-3382
[6]   Evanescent Effects can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences [J].
Bern, Zvi ;
Cheung, Clifford ;
Chi, Huan-Hang ;
Davies, Scott ;
Dixon, Lance ;
Nohle, Josh .
PHYSICAL REVIEW LETTERS, 2015, 115 (21)
[7]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[8]   RENORMALIZATION OF TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
RAKOWSKI, M ;
THOMPSON, G .
NUCLEAR PHYSICS B, 1990, 329 (01) :83-97
[9]   TOPOLOGICAL GAUGE-THEORIES OF ANTISYMMETRIC TENSOR-FIELDS [J].
BLAU, M ;
THOMPSON, G .
ANNALS OF PHYSICS, 1991, 205 (01) :130-172
[10]   On mirror maps for manifolds of exceptional holonomy [J].
Braun, Andreas P. ;
Majumder, Suvajit ;
Otto, Alexander .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)