STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction

被引:417
作者
Huang, Yingfan [1 ,2 ]
Bi, HuiKun [1 ]
Li, Zhaoxin [1 ]
Mao, Tianlu [1 ]
Wang, Zhaoqi [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
基金
中国国家自然科学基金;
关键词
ATTENTION;
D O I
10.1109/ICCV.2019.00637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human trajectory prediction is challenging and critical in various applications (e.g., autonomous vehicles and social robots). Because of the continuity and foresight of the pedestrian movements, the moving pedestrians in crowded spaces will consider both spatial and temporal interactions to avoid future collisions. However, most of the existing methods ignore the temporal correlations of interactions with other pedestrians involved in a scene. In this work, we propose a Spatial-Temporal Graph Attention network (STGAT), based on a sequence-to-sequence architecture to predict future trajectories of pedestrians. Besides the spatial interactions captured by the graph attention mechanism at each time-step, we adopt an extra LSTM to encode the temporal correlations of interactions. Through comparisons with state-of-the-art methods, our model achieves superior performance on two publicly available crowd datasets (ETH and UCY) and produces more "socially" plausible trajectories for pedestrians.
引用
收藏
页码:6281 / 6290
页数:10
相关论文
共 43 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Socially-aware Large-scale Crowd Forecasting [J].
Alahi, Alexandre ;
Ramanathan, Vignesh ;
Li Fei-Fei .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2211-2218
[3]  
[Anonymous], 2017, International Joint Conferences on Artificial Intelligence
[4]  
[Anonymous], 2011, PROC CVPR IEEE, DOI 10.1109/CVPR.2011.59954684
[5]   Discrete choice models of pedestrian walking behavior [J].
Antonini, Gianluca ;
Bierlaire, Michel ;
Weber, Mats .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2006, 40 (08) :667-687
[6]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[7]  
Bera A, 2016, IEEE INT CONF ROBOT, P5528, DOI 10.1109/ICRA.2016.7487768
[8]  
Cho K, 2014, ARXIV14061078
[9]  
Chorowski J., 2014, P NIPS
[10]  
Donahue J, 2015, PROC CVPR IEEE, P2625, DOI 10.1109/CVPR.2015.7298878