UNIVERSAL HARMONIC FUNCTIONS ON THE HYPERBOLIC SPACE

被引:1
作者
Bacharoglou, Athanassia [1 ]
Stamatiou, George [1 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
hyperbolic ball; harmonic functions; Poisson kernel; universal series; overconvergence;
D O I
10.4064/cm121-1-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove universal overconvergence phenomena for harmonic functions on the real hyperbolic space.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1953, Higher transcendental functions
[2]   Universal overconvergence of polynomial expansions of harmonic functions [J].
Armitage, DH .
JOURNAL OF APPROXIMATION THEORY, 2002, 118 (02) :225-234
[3]  
Axler S., 2001, GRAD TEXT M, DOI 10.1007/978-1-4757-8137-3
[4]  
BASS RF, 1995, PROBAB APPL
[5]   Abstract theory of universal series and applications [J].
Bayart, F. ;
Grosse-Erdmann, K. -G. ;
Nestoridis, V. ;
Papadimitropoulos, C. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :417-463
[6]   A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions [J].
Bezubik, Agata ;
Strasburger, Aleksander .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
[7]   Poisson kernel and Green function of the ball in real hyperbolic spaces [J].
Byczkowski, T. ;
Malecki, J. .
POTENTIAL ANALYSIS, 2007, 27 (01) :1-26
[8]  
Erdelyi A., 1953, Higher transcendental functions, V2
[9]  
Freidlin M., 1985, ANN MATH STUD, V109
[10]  
GARDINER SJ, 1995, LONDON MATH SOC LECT, V221