Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [41] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [42] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [43] Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems
    Ahmadi, Mohamadreza
    Mojallali, Hamed
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1108 - 1120
  • [44] Bayesian state and parameter estimation of uncertain dynamical systems
    Ching, JY
    Beck, JL
    Porter, KA
    PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (01) : 81 - 96
  • [45] Parameter estimation of nonlinear chaotic system by improved TLBO strategy
    Zhang, Hongjun
    Li, Baozhu
    Zhang, Jun
    Qin, Yuanhui
    Feng, Xiaoyi
    Liu, Bo
    SOFT COMPUTING, 2016, 20 (12) : 4965 - 4980
  • [46] Chaotic System Parameter Estimation with Improved Gravitational Search Algorithm
    Wang, Jiarong
    Huang, Yu
    Liang, Weiping
    INDUSTRIAL ENGINEERING, MACHINE DESIGN AND AUTOMATION (IEMDA 2014) & COMPUTER SCIENCE AND APPLICATION (CCSA 2014), 2015, : 374 - 379
  • [47] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, D
    Ma, XK
    Li, FC
    You, Y
    ACTA PHYSICA SINICA, 2002, 51 (11) : 2459 - 2462
  • [48] Parameter Estimation of Fuel Cell Using Chaotic Mayflies Optimization Algorithm
    Gupta, Jyoti
    Nijhawan, Parag
    Ganguli, Souvik
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (12)
  • [49] Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems
    Mousazadeh, Ali
    Shekofteh, Yasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 94 (94)
  • [50] Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift
    del-Castillo-Negrete, Carlos
    Spence, Rylan
    Butler, Troy
    Dawson, Clint
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (03)