Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [31] Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization
    Lin, Jian
    NONLINEAR DYNAMICS, 2014, 77 (03) : 983 - 992
  • [32] Parameter Estimation for Chaotic Systems by Improved Artificial Bee Colony Algorithm
    Li, Xiangtao
    Yin, Minghao
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 756 - 762
  • [33] Differential evolution algorithm-based parameter estimation for chaotic systems
    Peng, Bo
    Liu, Bo
    Zhang, Fu-Yi
    Wang, Ling
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2110 - 2118
  • [34] Parameter estimation for chaotic systems based on hybrid differential evolution algorithm
    Wang Jun-Yan
    Huang De-Xian
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2755 - 2760
  • [35] The influence of samples on meta-heuristic algorithm for parameter estimation of chaotic system
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Alamodi, O. A.
    MODERN PHYSICS LETTERS B, 2019, 33 (04):
  • [36] Adaptive artificial bee colony optimization for parameter estimation of chaotic systems
    Ren, Kaijun
    Deng, Kefeng
    Liu, Shaowei
    Song, Junqiang
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2015, 37 (05): : 135 - 140
  • [37] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [38] Some novel techniques of parameter estimation for dynamical models in biological systems
    Liu, F.
    Burrage, K.
    Hamilton, N. A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (02) : 235 - 260
  • [39] The robustness optimization of parameter estimation in chaotic control systems
    Xu, Zhen
    Journal of Engineering Science and Technology Review, 2015, 8 (02) : 61 - 67
  • [40] Synchronization and cryptography using chaotic dynamical systems
    Chis, O.
    Opris, D.
    BSG PROCEEDINGS 16, 2009, 16 : 47 - 56