Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [21] Parameter estimation of chaotic systems based on extreme value points
    Chen, Zhihuan
    Yuan, Xiaohui
    Wang, Xu
    Yuan, Yanbin
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (06):
  • [22] Parameter estimation for chaotic systems using a geometric approach: theory and experiment
    C. C. Olson
    J. M. Nichols
    L. N. Virgin
    Nonlinear Dynamics, 2012, 70 : 381 - 391
  • [23] Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems
    Mousavi, Yashar
    Alfi, Alireza
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 202 - 215
  • [24] An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems
    Wang, Ling
    Li, Ling-po
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1279 - 1285
  • [25] A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation
    Wang, Jun
    Zhou, Bihua
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06) : 1511 - 1517
  • [26] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : A2212 - A2238
  • [27] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
    李念强
    潘炜
    闫连山
    罗斌
    徐明峰
    江宁
    Chinese Physics B, 2011, (06) : 76 - 81
  • [28] Optimal parameter estimation of dynamical systems using direct transcription methods
    Williams, P
    Trivailo, P
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2005, 13 (04) : 377 - 409
  • [29] Parameter estimation for chaotic systems based on Chaotic-search Artificial Bee Colony Algorith
    Shan, H. (shfshanhuifeng@163.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (11): : 580 - 588
  • [30] Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm
    Li, Xiangtao
    Yin, Minghao
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 61 - 71