ON THE INTERNAL STRUCTURE OF THE MAGNETIC FIELD IN MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS: WRITHE VERSUS TWIST

被引:40
作者
Al-Haddad, N. [1 ,2 ]
Roussev, I. I. [1 ]
Moestl, C. [3 ,4 ]
Jacobs, C. [2 ]
Lugaz, N. [1 ]
Poedts, S. [2 ]
Farrugia, C. J. [5 ,6 ]
机构
[1] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
[2] Katholieke Univ Leuven, Ctr Plasma Astrofys, B-3001 Louvain, Belgium
[3] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[4] Graz Univ, Inst Phys, A-8010 Graz, Austria
[5] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[6] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
基金
奥地利科学基金会;
关键词
Sun: corona; Sun: coronal mass ejections (CMEs); FLUX ROPES; RECONSTRUCTION; PROPAGATION; TOPOLOGY; WIND; CME;
D O I
10.1088/2041-8205/738/2/L18
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this study, we test the flux rope paradigm by performing a "blind" reconstruction of the magnetic field structure of a simulated interplanetary coronal mass ejection (ICME). The ICME is the result of a magnetohydrodynamic numerical simulation and does not exhibit much magnetic twist, but appears to have some characteristics of a magnetic cloud, due to a writhe in the magnetic field lines. We use the Grad-Shafranov technique with simulated spacecraft measurements at two different distances and compare the reconstructed magnetic field with that of the ICME in the simulation. While the reconstructed magnetic field is similar to the simulated one as seen in two dimensions, it yields a helically twisted magnetic field in three dimensions. To further verify the results, we perform the reconstruction at three different position angles at every distance point, and all results are found to be in agreement. This work demonstrates that the current paradigm of associating magnetic clouds with flux ropes may have to be revised.
引用
收藏
页数:6
相关论文
共 29 条
[1]  
BURLAGA L, 1981, J GEOPHYS RES-SPACE, V86, P6673, DOI 10.1029/JA086iA08p06673
[3]   Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex [J].
Farrugia, C. J. ;
Berdichevsky, D. B. ;
Moestl, C. ;
Galvin, A. B. ;
Leitner, M. ;
Popecki, M. A. ;
Simunac, K. D. C. ;
Opitz, A. ;
Lavraud, B. ;
Ogilvie, K. W. ;
Veronig, A. M. ;
Temmer, M. ;
Luhmann, J. G. ;
Sauvaud, J. A. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (10) :1254-1269
[4]   Estimation of the bias of the Minimum Variance technique in the determination of magnetic clouds global quantities and orientation [J].
Gulisano, A. M. ;
Dasso, S. ;
Mandrini, C. H. ;
Demoulin, P. .
ADVANCES IN SPACE RESEARCH, 2007, 40 (12) :1881-1890
[5]   Elliptical cross-section model for the magnetic topology of magnetic clouds [J].
Hidalgo, MA ;
Nieves-Chinchilla, T ;
Cid, C .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (13) :15-1
[6]   Reconstruction of magnetic clouds in the solar wind:: Orientations and configurations -: art. no. 1142 [J].
Hu, Q ;
Sonnerup, BUÖ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A7)
[7]   Reconstruction of magnetic flux ropes in the solar wind [J].
Hu, Q ;
Sonnerup, BUÖ .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (03) :467-470
[8]   THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES? [J].
Jacobs, C. ;
Roussev, I. I. ;
Lugaz, N. ;
Poedts, S. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 695 (02) :L171-L175
[9]   Models for coronal mass ejections [J].
Jacobs, Carla ;
Poedts, Stefaan .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (10) :1148-1155
[10]   Solar energetic electron probes of magnetic cloud field line lengths [J].
Kahler, S. W. ;
Krucker, S. ;
Szabo, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116