Tightly-Coupled Model Aided Visual-Inertial Fusion for Quadrotor Micro Air Vehicles

被引:11
|
作者
Abeywardena, Dinuka [1 ]
Dissanayake, Gamini [1 ]
机构
[1] Univ Technol Sydney, Ctr Autonomous Syst, Sydney, NSW, Australia
来源
FIELD AND SERVICE ROBOTICS | 2015年 / 105卷
关键词
AUTONOMOUS NAVIGATION; VISION; CAMERA; IMU;
D O I
10.1007/978-3-319-07488-7_11
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The main contribution of this paper is a tightly-coupled visual-inertial fusion algorithm for simultaneous localisation and mapping (SLAM) for a quadrotor micro aerial vehicle (MAV). Proposed algorithm is based on an extended Kalman filter that uses a platform specific dynamic model to integrate information from an inertial measurement unit (IMU) and a monocular camera on board the MAV. MAV dynamic model exploits the unique characteristics of the quadrotor, making it possible to generate relatively accurate motion predictions. This, together with an undelayed feature initialisation strategy based on inverse depth parametrisation enables more effective feature tracking and reliable visual SLAM with a small number of features even during rapid manoeuvres. Experimental results are presented to demonstrate the effectiveness of the proposed algorithm.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 50 条
  • [1] Tightly-coupled GNSS-aided Visual-Inertial Localization
    Lee, Woosik
    Geneva, Patrick
    Yang, Yulin
    Huang, Guoquan
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9484 - 9491
  • [2] Visual-Inertial Fusion for Quadrotor Micro Air Vehicles with Improved Scale Observability
    Abeywardena, Dinuka
    Wang, Zhan
    Kodagoda, Sarath
    Dissanayake, Gamini
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3148 - 3153
  • [3] Visual-Inertial SLAM with Tightly-Coupled Dropout-Tolerant GPS Fusion
    Boche, Simon
    Zuo, Xingxing
    Schaefer, Simon
    Leutenegger, Stefan
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 7020 - 7027
  • [4] Visual-inertial odometry based on tightly-coupled encoder
    Hu, Zhangfang
    Guo, Zhenqian
    Luo, Yuan
    Chen, Jian
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IX, 2022, 12317
  • [5] Tightly-Coupled Monocular Visual-Inertial Fusion for Autonomous Flight of Rotorcraft MAVs
    Shen, Shaojie
    Michael, Nathan
    Kumar, Vijay
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5303 - 5310
  • [6] Tightly-coupled Fusion of Global Positional Measurements in Optimization-based Visual-Inertial Odometry
    Cioffi, Giovanni
    Scaramuzza, Davide
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5089 - 5095
  • [7] Sensor Synchronization for Android Phone Tightly-Coupled Visual-Inertial SLAM
    Feng, Zheyu
    Li, Jianwen
    Dai, Taogao
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL III, 2018, 499 : 601 - 612
  • [8] Fast, On-board, Model-aided Visual-Inertial Odometry System for Quadrotor Micro Aerial Vehicles
    Abeywardena, Dinuka
    Huang, Shoudong
    Barnes, Ben
    Dissanayake, Gamini
    Kodagoda, Sarath
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1530 - 1537
  • [9] Tightly-Coupled Stereo Visual-Inertial Navigation Using Point and Line Features
    Kong, Xianglong
    Wu, Wenqi
    Zhang, Lilian
    Wang, Yujie
    SENSORS, 2015, 15 (06) : 12816 - 12833
  • [10] Tightly Coupled Visual-Inertial Fusion for Attitude Estimation of Spacecraft
    Yi, Jinhui
    Ma, Yuebo
    Long, Hongfeng
    Zhu, Zijian
    Zhao, Rujin
    REMOTE SENSING, 2024, 16 (16)